O7/Core/Src/acc_hal_integration_a111.c

228 lines
5.6 KiB
C
Raw Normal View History

2024-04-08 14:23:48 +08:00
// Copyright (c) Acconeer AB, 2018-2022
// All rights reserved
// This file is subject to the terms and conditions defined in the file
// 'LICENSES/license_acconeer.txt', (BSD 3-Clause License) which is part
// of this source code package.
#include <stdarg.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include "main.h"
#include "sys_app.h"
#include "acc_definitions_common.h"
#include "acc_hal_definitions.h"
#include "acc_hal_integration.h"
#include "acc_integration.h"
#include "acc_integration_log.h"
#include "acc_version.h"
#include "acc_rss.h"
enum transfer_state {
TRANSFER_COMPLETE = (int) 0,
TRANSFER_ERROR,
TRANSFER_READY
};
/* spi handle */
extern SPI_HandleTypeDef A111_SPI_HANDLE;
/**
* @brief The number of sensors available on the board
*/
#define SENSOR_COUNT 1
/**
* @brief Size of SPI transfer buffer
*/
#ifndef A111_SPI_MAX_TRANSFER_SIZE
#define A111_SPI_MAX_TRANSFER_SIZE 65535 //4096 //65535
#endif
/**
* @brief The reference frequency used by this board
*
* This assumes 26 MHz on the Sparkfun A111 Board
*/
//#define ACC_BOARD_REF_FREQ 26000000
#define ACC_BOARD_REF_FREQ 24000000
static inline void disable_interrupts(void)
{
__disable_irq();
}
static inline void enable_interrupts(void)
{
__enable_irq();
__ISB();
}
#ifdef A111_USE_SPI_DMA
static volatile bool spi_transfer_complete;
void HAL_SPI_TxRxCpltCallback(SPI_HandleTypeDef *hspi)
{
(void)hspi;
spi_transfer_complete = true;
}
#endif
//----------------------------------------
// Implementation of RSS HAL handlers
//----------------------------------------
static void acc_hal_integration_sensor_transfer(acc_sensor_id_t sensor_id, uint8_t *buffer, size_t buffer_size)
{
(void)sensor_id; // Ignore parameter sensor_id
const uint32_t SPI_TRANSMIT_RECEIVE_TIMEOUT = 5000;
HAL_GPIO_WritePin(A111_CS_N_GPIO_Port, A111_CS_N_Pin, GPIO_PIN_RESET);
#ifdef A111_USE_SPI_DMA
spi_transfer_complete = false;
HAL_StatusTypeDef status = HAL_SPI_TransmitReceive_DMA(&A111_SPI_HANDLE, buffer, buffer, buffer_size);
if (status != HAL_OK)
{
return;
}
uint32_t start = HAL_GetTick();
while (!spi_transfer_complete && (HAL_GetTick() - start) < SPI_TRANSMIT_RECEIVE_TIMEOUT)
{
// Turn off interrupts
disable_interrupts();
// Check once more so that the interrupt have not occurred
if (!spi_transfer_complete)
{
__WFI();
}
// Enable interrupt again, the ISR will execute directly after this
enable_interrupts();
}
#else
HAL_SPI_TransmitReceive(&A111_SPI_HANDLE, buffer, buffer, buffer_size, SPI_TRANSMIT_RECEIVE_TIMEOUT);
#endif
HAL_GPIO_WritePin(A111_CS_N_GPIO_Port, A111_CS_N_Pin, GPIO_PIN_SET);
}
static void acc_hal_integration_sensor_power_on(acc_sensor_id_t sensor_id)
{
(void)sensor_id; // Ignore parameter sensor_id
PME_ON;
HAL_Delay(5);
2024-04-08 14:23:48 +08:00
HAL_GPIO_WritePin(A111_ENABLE_GPIO_Port, A111_ENABLE_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(A111_CS_N_GPIO_Port, A111_CS_N_Pin, GPIO_PIN_SET);
// Wait 2 ms to make sure that the sensor crystal have time to stabilize
HAL_Delay(2);
}
static void acc_hal_integration_sensor_power_off(acc_sensor_id_t sensor_id)
{
(void)sensor_id; // Ignore parameter sensor_id
HAL_GPIO_WritePin(A111_CS_N_GPIO_Port, A111_CS_N_Pin, GPIO_PIN_RESET);
HAL_GPIO_WritePin(A111_ENABLE_GPIO_Port, A111_ENABLE_Pin, GPIO_PIN_RESET);
// Wait after power off to leave the sensor in a known state
// in case the application intends to enable the sensor directly
HAL_Delay(2);
}
static bool acc_hal_integration_wait_for_sensor_interrupt(acc_sensor_id_t sensor_id, uint32_t timeout_ms)
{
(void)sensor_id; // Ignore parameter sensor_id
const uint32_t wait_begin_ms = HAL_GetTick();
while ((HAL_GPIO_ReadPin(A111_SENSOR_INTERRUPT_GPIO_Port, A111_SENSOR_INTERRUPT_Pin) != GPIO_PIN_SET) &&
(HAL_GetTick() - wait_begin_ms < timeout_ms))
{
// Wait for the GPIO interrupt
disable_interrupts();
// Check again so that IRQ did not occur
if (HAL_GPIO_ReadPin(A111_SENSOR_INTERRUPT_GPIO_Port, A111_SENSOR_INTERRUPT_Pin) != GPIO_PIN_SET)
{
__WFI();
}
// Enable interrupts again to allow pending interrupt to be handled
enable_interrupts();
}
return HAL_GPIO_ReadPin(A111_SENSOR_INTERRUPT_GPIO_Port, A111_SENSOR_INTERRUPT_Pin) == GPIO_PIN_SET;
}
static float acc_hal_integration_get_reference_frequency(void)
{
return ACC_BOARD_REF_FREQ;
}
static const acc_hal_t hal =
{
.properties.sensor_count = SENSOR_COUNT,
.properties.max_spi_transfer_size = A111_SPI_MAX_TRANSFER_SIZE,
.sensor_device.power_on = acc_hal_integration_sensor_power_on,
.sensor_device.power_off = acc_hal_integration_sensor_power_off,
.sensor_device.wait_for_interrupt = acc_hal_integration_wait_for_sensor_interrupt,
.sensor_device.transfer = acc_hal_integration_sensor_transfer,
.sensor_device.get_reference_frequency = acc_hal_integration_get_reference_frequency,
.os.mem_alloc = malloc,
.os.mem_free = free,
.os.gettime = acc_integration_get_time,
.log.log_level = ACC_LOG_LEVEL_INFO,
.log.log = acc_integration_log,
.optimization.transfer16 = NULL,
};
const acc_hal_t *acc_hal_integration_get_implementation(void)
{
return &hal;
}
bool hal_test_spi_read_chipid(uint8_t chipid[2])
{
const uint32_t sensor = 1;
uint8_t buffer[6] = {0x30,0x0,0x0,0x0,0x0,0x0};
const acc_hal_t *hal = acc_hal_integration_get_implementation();
hal->sensor_device.power_on(sensor);
hal->sensor_device.transfer(sensor,buffer,sizeof(buffer));
hal->sensor_device.power_off(sensor);
if (buffer[4] == 0x11 && buffer[5] == 0x12) {
chipid[0] = buffer[4];
chipid[1] = buffer[5];
return true;
}
else
{
chipid[0] = 0x0;
chipid[1] = 0x0;
return false;
}
}