
Iq Service
User Guide

Iq Service

Iq Service

User Guide

Author: Acconeer AB

Version:v2.0.0

Acconeer AB December 2, 2019

深圳市佰誉达科技有限公司 Tel: 0755-2328 2845 Page 1 of 11

Iq Service

Contents

1 IQ Service 3
1.1 Disclaimer . 3

2 Setting up the Service 3
2.1 Initializing the System . 3
2.2 Service API . 4
2.3 IQ Service Configuration . 4

2.3.1 Profiles . 4
2.3.2 Repetition Mode . 5
2.3.3 Output Data Format . 5

2.4 Creating Service . 6
2.5 Reading IQ Data from the Sensor . 6
2.6 Deactivating and Destroying the Service . 7

3 How to Interpret the IQ Data 7
3.1 Calculating Amplitude and Phase . 7
3.2 Plotting Amplitude and Phase . 8
3.3 IQ Metadata . 9
3.4 IQ Result Info . 9
3.5 Micro Motion Measurement Example . 9

4 Disclaimer 11

深圳市佰誉达科技有限公司 Tel: 0755-2328 2845 Page 2 of 11

Iq Service

1 IQ Service

The IQ Service is one of four services that provide an interface for reading out the radar signal from the Acconeer A111
sensor. The IQ-data can be seen as an extension of the Envelope data. In addition to the amplitude, the IQ data also
includes information on the phase of the radar signal. The data returned from the IQ Service is represented as complex
numbers and the IQ data is typically further processed using various signal processing algorithms. The IQ data can for
example be used for measurement of small changes in distance with micrometer accuracy or for efficient background
cancellation.

For applications where the phase information is not needed you may consider using the Envelope service or Power Bins
service instead. They both provide amplitude data and are easier to understand and work with compared to the IQ Service.
The Envelope service provides full resolution, whereas the power bins interface provides less processed subsampled
amplitude data.

Figure 1:

Before using the IQ service, we recommend that you have a basic understanding of complex numbers and how they are
used to represent phase and amplitude in signal processing.

Acconeer provide an example of how to use the IQ service: example service iq.c

For more details on the IQ data it is recommended to use our exploration tool. Check it out on github,
https://github.com/acconeer/acconeer-python-exploration.

1.1 Disclaimer

Profile 3-5 will not have optimal performance using A111 with batch number 10467, 10457 or 10178 (also when mounted
on XR111 and XR112). XM112 and XM122 are not affected since they have A111 from other batches.

2 Setting up the Service

2.1 Initializing the System

The Radar System Software (RSS) must be activated before any other calls are done. The activation requires a pointer
to an acc hal t struct which contains information on the hardware integration and function pointers to hardware driver

深圳市佰誉达科技有限公司 Tel: 0755-2328 2845 Page 3 of 11

https://github.com/acconeer/acconeer-python-exploration

Iq Service

functions that are needed by RSS. See chapter 4 in the document “HAL Integration User Guide” for more information on
how to integrate to the driver layer and populate the hal struct.

In Acconeer’s example integration towards STM32 and the drivers generated by the STM32Cube tool, there is a function
acc hal integration get implementation to obtain the hal struct.

acc_hal_t hal = acc_hal_integration_get_implementation ();

if (! acc_rss_activate (&hal))

{

/* Handle error */

}

The corresponding code looks slightly different in software packages for the Raspberry Pi and other software packages
from Acconeer where peripheral drivers for the host are included. The driver layer is first initialized by calling
acc driver hal init. The hal struct is then obtained with the function acc driver hal get implementation.

if (! acc_driver_hal_init ())

{

/* Handle error */

}

hal = acc_driver_hal_get_implementation ();

if (! acc_rss_activate (&hal))

{

/* Handle error */

}

2.2 Service API

All services in the Acconeer API are created and activated in two distinct steps. In the first creation step the configuration
settings are evaluated and all necessary resources are allocated. If there is some error in the configuration or if there are
not enough resources in the system to run the service, the creation step will fail. However, when the creation is successful
you can be sure that the second activation step will not fail due to any configuration or resource issues. When the service
is activated the radar is activated and the radar data starts to flow from the sensor to the application.

2.3 IQ Service Configuration

Before the IQ service can be created and activated, we must prepare a service configuration. First a configuration is
created.

acc_service_configuration_t iq_configuration =

acc_service_iq_configuration_create ();

if (iq_configuration == NULL)

{

/* Handle error */

}

The newly created service configuration contains default settings for all configuration parameters and can be passed
directly to the acc service create function. However, in most scenarios there is a need to change at least some of the
configuration parameters. See acc service iq.h and acc base configuration.h for a complete description of configuration
parameters.

2.3.1 Profiles

The services and detectors support profiles with different configuration of emission in the sensor. The different profiles
provide an option to configure the wavelet length and optimize on either depth resolution or radar loop gain. More

深圳市佰誉达科技有限公司 Tel: 0755-2328 2845 Page 4 of 11

Iq Service

information regarding profiles can be read in the sensor introduction document,
https://acconeer-python-exploration.readthedocs.io/en/latest/sensor introduction.html.

Figure 2:

The figure above shows the Envelope signal of the same objects with two different profiles, one with short wavelet and
one with longer.

The IQ service supports 5 different profiles which are defined in acc service.h. Profile 1 has the shortest wavelet and
should be used in applications which aim to see multiple objects or with short distance to the object. Profiles with higher
numbers have longer wavelets and are more suitable to use in applications which aim to see objects with weak reflection
or objects further away from the sensor. The highest profiles, 4 and 5, are optimized for maximum radar loop gain which
leads to lower precision in the distance estimate. It is recommended to start using profile 2 and 3. Profile 1, 4 and 5 are
not yet optimized for all configurations for the IQ service.

Profiles can be configured by the application by using a set function in the service api. The default profile is
ACC SERVICE PROFILE 2.

void acc_service_profile_set(acc_service_configuration_t

service_configuration ,

acc_service_profile_t profile);

2.3.2 Repetition Mode

RSS supports two different repetition modes which configure the control flow of the sensor when it’s producing data. In
both modes, the application initiates the data transfer from the sensor and is responsible to keep the timing by fetching data
from the service. The repetition modes are called on demand and streaming and the default mode is on demand.

Repetition mode on demand lets the application decide when the sensor produces data. This mode is recommended to
be used if the application is not dependent of a fixed update rate and it’s more important for the application to control
the timing. An example could be if the application requests data at irregular time or with low frequency and it’s more
important to enable low power consumption. Repetition mode on demand should also be used if the application set a
length which requires stitching or want to use power save mode off.

void acc_base_configuration_repetition_mode_on_demand_set(

acc_base_configuration_t configuration);

Repetition mode streaming configures the sensor to produce data based on a hardware timer which is very accurate. It
is recommended to use repetition mode streaming if the application requires very accurate timing. An example could
be if the data should be processed with a fft. This mode can not be used it the application set a length which requires
stitching.

void acc_base_configuration_repetition_mode_streaming_set(

acc_base_configuration_t configuration , float update_rate);

2.3.3 Output Data Format

The IQ service have an option to provide two different types of output format, int16 complex and float complex. The
default output type is int16 complex and the type can be changed with a configuration function.

深圳市佰誉达科技有限公司 Tel: 0755-2328 2845 Page 5 of 11

https://acconeer-python-exploration.readthedocs.io/en/latest/sensor_introduction.html

Iq Service

typedef enum

{

ACC_SERVICE_IQ_OUTPUT_FORMAT_FLOAT_COMPLEX , // The output format is

float complex

ACC_SERVICE_IQ_OUTPUT_FORMAT_INT16_COMPLEX // The output format is

acc_int16_complex_t

} acc_service_iq_output_format_enum_t;

typedef uint32_t acc_service_iq_output_format_t;

void acc_service_iq_output_format_set(acc_service_configuration_t

service_configuration ,

acc_service_iq_output_format_t format)

;

2.4 Creating Service

After the IQ configuration has been prepared and populated with desired configuration parameters, the actual IQ service
instance must be created. During the creation step all configuration parameters are validated and the resources needed by
RSS are reserved. This means that if the creation step is successful, we can be sure that it is possible to activate the service
and get data from the sensor (unless there is some unexpected hardware error).

acc_service_handle_t handle = acc_service_create(iq_configuration);

if (handle == NULL)

{

/* Handle error */

}

During service create, the service run a calibration sequence on the sensor. The calibration is used once at create and can
be used until the service is destroyed. A new calibration is needed if the environment is changed, such as deviation in
temperature.

If the service handle returned from acc service create is equal to NULL, then some setting in the configuration made it
impossible for the system to create the service. One common reason is that the requested sweep length is too long or if
the calibration fail, but in general, looking for error messages in the log is the best way to find out why a service creation
failed.

When the service has been created it is possible to get the actual number of samples (data length) we will get for each
sweep. This value can be useful when allocating buffers for storing the IQ data.

acc_service_iq_metadata_t iq_metadata;

acc_service_iq_get_metadata(handle , &iq_metadata);

uint16_t data[iq_metadata.data_length];

It is now also possible to activate the service. This means that the radar sensor starts to do measurements.

if (! acc_service_activate(handle))

{

/* Handle error */

}

2.5 Reading IQ Data from the Sensor

IQ data is read from the sensor by a call to the function acc service iq get next. This function blocks until the next sweep
arrives from the sensor and the IQ data is then copied to the IQ data array.

uint16_t data[iq_metadata.data_length];

acc_service_iq_result_info_t result_info ;

for (int i = 0; i < 10; i ++)
{

深圳市佰誉达科技有限公司 Tel: 0755-2328 2845 Page 6 of 11

Iq Service

if (! acc_service_iq_get_next(handle , data , iq_metadata.data_length , &

result_info))

{

/* Handle error */

}

}

2.6 Deactivating and Destroying the Service

Call the acc service deactivate function to stop measurements.

if (! acc_service_deactivate(handle))

{

/* Handle error */

}

After the service has been deactivated it can be activated again to resume measurements or it can be destroyed to free up
the resources associated with the service handle.

acc_service_destroy (& handle);

Finally, call acc rss deactivate when the application doesn’t need to access the Radar System Software anymore. This
releases any remaining resources allocated in RSS.

acc_rss_deactivate ();

3 How to Interpret the IQ Data

3.1 Calculating Amplitude and Phase

Each IQ data sample is a complex number consisting of two parts, a real component and an imaginary component. All
complex numbers can be written in the form a + bi, where a and b are two ordinary real numbers and i is the imaginary
unit that can be thought of having the value sqrt(-1). A complex number z = a + bi is said to have the real part a and the
imaginary part b.

Complex numbers can also be seen as points or vectors in the complex plane and be represented in polar coordinates with
a radius and an angle. In the context of IQ data, the radius corresponds to the signal amplitude and angle is the phase of
the signal.

Figure 3:

The Acconeer IQ data API rely on the c99 representation of complex float. Use the functions crealf and cimagf to extract
the real and imaginary parts of the complex number.

深圳市佰誉达科技有限公司 Tel: 0755-2328 2845 Page 7 of 11

Iq Service

#include <complex.h>

float complex z = 2 + 3*I;

float a = crealf(z);

float b = cimagf(z);

float amplitude = cabsf(z); // same as sqrtf(a*a + b*b)

float phase = cargf(z); // same as atan2f(b,a)

The phase difference between two IQ data samples z1 and z2 can be calculated using the expression cargf(z2 *
conjf(z1)).

float phase_shift = cargf(z2 * conjf(z1));

3.2 Plotting Amplitude and Phase

The graphs below show the amplitude and phase response from an object placed about 28 cm from the sensor. In the
amplitude graph we can see shadow reflections 6 and 12 cm behind the object. To achieve as stable phase as possible,
we are running the A111 radar sensor in a different mode in the IQ Service compared to the Envelope and Power Bins
services. The phase gets more stable in the IQ service but as a side effect we are getting shadow reflections behind the
object.

Figure 4:

Note that in the phase plot below, the signal wraps around from pi to -pi at a distance around 0.30m and then it goes back
from -pi to pi a little bit later.

深圳市佰誉达科技有限公司 Tel: 0755-2328 2845 Page 8 of 11

Iq Service

Figure 5:

3.3 IQ Metadata

In addition to the array with IQ data samples, a metadata data structure provides side information that can be useful when
interpreting the IQ data. This metadata can be retrieved after creating the service. It will not change during operation, so
it is only needed to be retrieved once for the created service.

acc_service_iq_metadata_t iq_metadata;

acc_service_iq_get_metadata(handle , &iq_metadata);

The most important member variable in the meta data structure is data length which holds the length of the IQ data array.
For other member variables see acc service iq metadata t.

3.4 IQ Result Info

Result info is another kind of metadata which might change for each retrieved result. Result info is provided at the same
time as the resulting array, either when calling get next() or when a callback is triggered.

acc_service_iq_result_info_t result_info;

acc_service_iq_get_next(handle , data , data_length , &result_info);

The most important member variable is the sensor communication error which indicates whether a sensor communication
has occurred. For other member variables see acc service iq result info t

3.5 Micro Motion Measurement Example

In this example we will implement a simple phase tracking algorithm that can detect micro motions about 25 cm from the
sensor. It will look at differences in the phase information between consecutive sweeps and from that calculate how much
the object has moved. For each sweep we will look at one sample in the middle of the sweep array so the sweep length
can be decreased to a few centimeters. A short sweep range also means that we can run at a high sweep frequency. That
is good, because between two sweeps, we can only measure phase differences up to pi radians – which corresponds to
object movements of up to 1.25mm.

/* Set up the IQ service as described in chapter 2 and 3, use the

configuration below */

float frequencey = 300;

acc_base_configuration_requested_start_set(base_configuration , 0.2);

acc_base_configuration_requested_length_set(base_configuration , 0.4);

acc_base_configuration_repetition_mode_streaming_set(base_configuration ,

frequencey);

深圳市佰誉达科技有限公司 Tel: 0755-2328 2845 Page 9 of 11

Iq Service

The IQ data sample from the previous sweep is stored in the variable z0 and the sample from the current sweep is stored
in z1. The phase difference between the two sweeps is then calculated and we will get the movement between the sweeps
by multiplying by wavelength / (4 * pi). The variable acc dist holds the accumulated distance changes since start of
tracking. If the amplitude falls under the threshold the accumulated distance is reset to 0. Note that we are tracking
relative movements about 25 cm from the sensor, wo do not measure any absolute distances in this example.

const float wavelength = 5.0; // wavelength in mm

const float pi = 3.14159265359;

const float amplitude_threshold = 0.1;

float complex z0 = 0;

float acc_dist = 0;

bool status;

while (true) {

status = acc_service_iq_get_next(iq_handle , iq_data , iq_metadata.

data_length ,

&result_info);

if (! status) {

/* handle error */

}

float complex z1 = iq_data[iq_metadata.data_length /2];

if (cabsf(z1) > amplitude_threshold) {

if(z0 != 0) {

float delta_dist = cargf(z1 * conjf(z0)) * wavelength / (4 * pi)

;

acc_dist += delta_dist;

printf("delta distance % 0.2f mm , accumulated distance % 0.2f mm

, speed = "

"% 0.2f m/s\n", delta_dist , acc_dist , delta_dist *

frequencey /1000);

}

z0 = z1;

} else if (z0 != 0) {

printf("no object detected , resetting tracking\n");

z0 = 0;

acc_dist = 0;

}

}

深圳市佰誉达科技有限公司 Tel: 0755-2328 2845 Page 10 of 11

Iq Service

4 Disclaimer

The information herein is believed to be correct as of the date issued. Acconeer AB (“Acconeer”) will not be responsible
for damages of any nature resulting from the use or reliance upon the information contained herein. Acconeer makes no
warranties, expressed or implied, of merchantability or fitness for a particular purpose or course of performance or usage
of trade. Therefore, it is the user’s responsibility to thoroughly test the product in their particular application to
determine its performance, efficacy and safety. Users should obtain the latest relevant information before placing orders.

Unless Acconeer has explicitly designated an individual Acconeer product as meeting the requirement of a particular
industry standard, Acconeer is not responsible for any failure to meet such industry standard requirements.

Unless explicitly stated herein this document Acconeer has not performed any regulatory conformity test. It is the user’s
responsibility to assure that necessary regulatory conditions are met and approvals have been obtained when using the
product. Regardless of whether the product has passed any conformity test, this document does not constitute any
regulatory approval of the user’s product or application using Acconeer’s product.

Nothing contained herein is to be considered as permission or a recommendation to infringe any patent or any other
intellectual property right. No license, express or implied, to any intellectual property right is granted by Acconeer
herein.

Acconeer reserves the right to at any time correct, change, amend, enhance, modify, and improve this document and/or
Acconeer products without notice.

This document supersedes and replaces all information supplied prior to the publication hereof.

深圳市佰誉达科技有限公司 Tel: 0755-2328 2845 Page 11 of 11

	IQ Service
	Disclaimer

	Setting up the Service
	Initializing the System
	Service API
	IQ Service Configuration
	Profiles
	Repetition Mode
	Output Data Format

	Creating Service
	Reading IQ Data from the Sensor
	Deactivating and Destroying the Service

	How to Interpret the IQ Data
	Calculating Amplitude and Phase
	Plotting Amplitude and Phase
	IQ Metadata
	IQ Result Info
	Micro Motion Measurement Example

	Disclaimer

