/*! * \file LoRaMacCrypto.c * * \brief LoRa MAC layer cryptography implementation * * \copyright Revised BSD License, see section \ref LICENSE. * * \code * ______ _ * / _____) _ | | * ( (____ _____ ____ _| |_ _____ ____| |__ * \____ \| ___ | (_ _) ___ |/ ___) _ \ * _____) ) ____| | | || |_| ____( (___| | | | * (______/|_____)_|_|_| \__)_____)\____)_| |_| * (C)2013-2017 Semtech * * ___ _____ _ ___ _ _____ ___ ___ ___ ___ * / __|_ _/_\ / __| |/ / __/ _ \| _ \/ __| __| * \__ \ | |/ _ \ (__| ' <| _| (_) | / (__| _| * |___/ |_/_/ \_\___|_|\_\_| \___/|_|_\\___|___| * embedded.connectivity.solutions=============== * * \endcode * * \author Miguel Luis ( Semtech ) * * \author Gregory Cristian ( Semtech ) * * \author Daniel Jaeckle ( STACKFORCE ) * * \author Johannes Bruder ( STACKFORCE ) */ #include <stdbool.h> #include <stdlib.h> #include <stdint.h> #include "utilities.h" #include "secure-element.h" #include "LoRaMacParser.h" #include "LoRaMacSerializer.h" #include "LoRaMacCrypto.h" /* * Frame direction definition for uplink communications */ #define UPLINK 0 /* * Frame direction definition for downlink communications */ #define DOWNLINK 1 /* * CMAC/AES Message Integrity Code (MIC) Block B0 size */ #define MIC_BLOCK_BX_SIZE 16 /* * Number of security context entries */ #define NUM_OF_SEC_CTX LORAMAC_MAX_MC_CTX + 1 /* * Size of the module context */ #define CRYPTO_CTX_SIZE sizeof( LoRaMacCryptoCtx_t ) /* * Size of the module non volatile context */ #define CRYPTO_NVM_CTX_SIZE sizeof( LoRaMacCryptoNvmCtx_t ) /* * Maximum size of the message that can be handled by the crypto operations */ #define CRYPTO_MAXMESSAGE_SIZE 256 /* * Maximum size of the buffer for crypto operations */ #define CRYPTO_BUFFER_SIZE CRYPTO_MAXMESSAGE_SIZE + MIC_BLOCK_BX_SIZE /*! * LoRaWAN Frame counter list. */ typedef struct sFCntList { /*! * Uplink frame counter which is incremented with each uplink. */ uint32_t FCntUp; /*! * Network downlink frame counter which is incremented with each downlink on FPort 0 * or when the FPort field is missing. */ uint32_t NFCntDown; /*! * Application downlink frame counter which is incremented with each downlink * on a port different than 0. */ uint32_t AFCntDown; /*! * In case if the device is connected to a LoRaWAN 1.0 Server, * this counter is used for every kind of downlink frame. */ uint32_t FCntDown; /*! * Multicast downlink counter for index 0 */ uint32_t McFCntDown0; #if ( LORAMAC_MAX_MC_CTX > 1 ) /*! * Multicast downlink counter for index 1 */ uint32_t McFCntDown1; /*! * Multicast downlink counter for index 2 */ uint32_t McFCntDown2; /*! * Multicast downlink counter for index 3 */ uint32_t McFCntDown3; #endif /* LORAMAC_MAX_MC_CTX > 1 */ #if ( USE_LRWAN_1_1_X_CRYPTO == 1 ) /* * RJcount1 is a counter incremented with every Rejoin request Type 1 frame transmitted. */ uint16_t RJcount1; #endif }FCntList_t; /* * LoRaMac Crypto Non Volatile Context structure */ typedef struct sLoRaMacCryptoNvmCtx { /* * Stores the information if the device is connected to a LoRaWAN network * server with prior to 1.1.0 implementation. */ Version_t LrWanVersion; /* * Device nonce is a counter starting at 0 when the device is initially * powered up and incremented with every JoinRequest. */ uint16_t DevNonce; /* * JoinNonce is a device specific counter value (that never repeats itself) * provided by the join server and incremented with every JoinAccept message. */ uint32_t JoinNonce; /* * Frame counter list */ FCntList_t FCntList; /* * LastDownFCnt stores the information which frame counter was used to unsecure the last frame. * This information is needed to compute ConfFCnt in B1 block for the MIC. */ uint32_t* LastDownFCnt; }LoRaMacCryptoNvmCtx_t; /* * LoRaMac Crypto Context structure */ typedef struct sLoRaMacCryptoCtx { #if ( USE_LRWAN_1_1_X_CRYPTO == 1 ) /* * RJcount0 is a counter incremented with every Type 0 or 2 Rejoin frame transmitted. */ uint16_t RJcount0; #endif /* * Non volatile module context structure */ LoRaMacCryptoNvmCtx_t* NvmCtx; /* * Callback function to notify the upper layer about context change */ LoRaMacCryptoNvmEvent EventCryptoNvmCtxChanged; }LoRaMacCryptoCtx_t; /* * Key-Address item */ typedef struct sKeyAddr { /* * Address identifier */ AddressIdentifier_t AddrID; /* * Application session key */ KeyIdentifier_t AppSkey; /* * Network session key */ KeyIdentifier_t NwkSkey; /* * Rootkey (Multicast only) */ KeyIdentifier_t RootKey; }KeyAddr_t; /* *Crypto module context. */ static LoRaMacCryptoCtx_t CryptoCtx; /* * Non volatile module context. */ static LoRaMacCryptoNvmCtx_t NvmCryptoCtx; /* * Key-Address list */ static KeyAddr_t KeyAddrList[NUM_OF_SEC_CTX] = { { MULTICAST_0_ADDR, MC_APP_S_KEY_0, MC_NWK_S_KEY_0, MC_KEY_0 }, #if ( LORAMAC_MAX_MC_CTX > 1 ) { MULTICAST_1_ADDR, MC_APP_S_KEY_1, MC_NWK_S_KEY_1, MC_KEY_1 }, { MULTICAST_2_ADDR, MC_APP_S_KEY_2, MC_NWK_S_KEY_2, MC_KEY_2 }, { MULTICAST_3_ADDR, MC_APP_S_KEY_3, MC_NWK_S_KEY_3, MC_KEY_3 }, #endif /* LORAMAC_MAX_MC_CTX > 1 */ #if ( USE_LRWAN_1_1_X_CRYPTO == 1 ) { UNICAST_DEV_ADDR, APP_S_KEY, S_NWK_S_INT_KEY, NO_KEY } #else /* USE_LRWAN_1_1_X_CRYPTO == 0 */ { UNICAST_DEV_ADDR, APP_S_KEY, NWK_S_KEY, NO_KEY } #endif /* USE_LRWAN_1_1_X_CRYPTO */ }; /* * Local functions */ /* * Encrypts the payload * * \param[IN] keyID - Key identifier * \param[IN] address - Address * \param[IN] dir - Frame direction ( Uplink or Downlink ) * \param[IN] frameCounter - Frame counter * \param[IN] size - Size of data * \param[IN/OUT] buffer - Data buffer * \retval - Status of the operation */ static LoRaMacCryptoStatus_t PayloadEncrypt( uint8_t* buffer, int16_t size, KeyIdentifier_t keyID, uint32_t address, uint8_t dir, uint32_t frameCounter ) { if( buffer == 0 ) { return LORAMAC_CRYPTO_ERROR_NPE; } uint8_t bufferIndex = 0; uint16_t ctr = 1; uint8_t sBlock[16] = { 0 }; uint8_t aBlock[16] = { 0 }; aBlock[0] = 0x01; aBlock[5] = dir; aBlock[6] = address & 0xFF; aBlock[7] = ( address >> 8 ) & 0xFF; aBlock[8] = ( address >> 16 ) & 0xFF; aBlock[9] = ( address >> 24 ) & 0xFF; aBlock[10] = frameCounter & 0xFF; aBlock[11] = ( frameCounter >> 8 ) & 0xFF; aBlock[12] = ( frameCounter >> 16 ) & 0xFF; aBlock[13] = ( frameCounter >> 24 ) & 0xFF; while( size > 0 ) { aBlock[15] = ctr & 0xFF; ctr++; if( SecureElementAesEncrypt( aBlock, 16, keyID, sBlock ) != SECURE_ELEMENT_SUCCESS ) { return LORAMAC_CRYPTO_ERROR_SECURE_ELEMENT_FUNC; } for( uint8_t i = 0; i < ( ( size > 16 ) ? 16 : size ); i++ ) { buffer[bufferIndex + i] = buffer[bufferIndex + i] ^ sBlock[i]; } size -= 16; bufferIndex += 16; } return LORAMAC_CRYPTO_SUCCESS; } #if ( USE_LRWAN_1_1_X_CRYPTO == 1 ) /* * Encrypts the FOpts * * \param[IN] address - Address * \param[IN] dir - Frame direction ( Uplink or Downlink ) * \param[IN] fCntID - Frame counter identifier * \param[IN] frameCounter - Frame counter * \param[IN] size - Size of data * \param[IN/OUT] buffer - Data buffer * \retval - Status of the operation */ static LoRaMacCryptoStatus_t FOptsEncrypt( uint16_t size, uint32_t address, uint8_t dir, FCntIdentifier_t fCntID, uint32_t frameCounter, uint8_t* buffer ) { if( buffer == 0 ) { return LORAMAC_CRYPTO_ERROR_NPE; } uint8_t bufferIndex = 0; uint8_t sBlock[16] = { 0 }; uint8_t aBlock[16] = { 0 }; aBlock[0] = 0x01; if( CryptoCtx.NvmCtx->LrWanVersion.Value > 0x01010000 ) { // Introduced in LoRaWAN 1.1.1 specification switch( fCntID ) { case FCNT_UP: { aBlock[4] = 0x01; break; } case N_FCNT_DOWN: { aBlock[4] = 0x01; break; } case A_FCNT_DOWN: { aBlock[4] = 0x02; break; } default: return LORAMAC_CRYPTO_FAIL_PARAM; } } aBlock[5] = dir; aBlock[6] = address & 0xFF; aBlock[7] = ( address >> 8 ) & 0xFF; aBlock[8] = ( address >> 16 ) & 0xFF; aBlock[9] = ( address >> 24 ) & 0xFF; aBlock[10] = frameCounter & 0xFF; aBlock[11] = ( frameCounter >> 8 ) & 0xFF; aBlock[12] = ( frameCounter >> 16 ) & 0xFF; aBlock[13] = ( frameCounter >> 24 ) & 0xFF; if( CryptoCtx.NvmCtx->LrWanVersion.Value > 0x01010000 ) { // Introduced in LoRaWAN 1.1.1 specification aBlock[15] = 0x01; } if( size > 0 ) { if( SecureElementAesEncrypt( aBlock, 16, NWK_S_ENC_KEY, sBlock ) != SECURE_ELEMENT_SUCCESS ) { return LORAMAC_CRYPTO_ERROR_SECURE_ELEMENT_FUNC; } for( uint8_t i = 0; i < size; i++ ) { buffer[bufferIndex + i] = buffer[bufferIndex + i] ^ sBlock[i]; } } return LORAMAC_CRYPTO_SUCCESS; } #endif /* * Prepares B0 block for cmac computation. * * \param[IN] msgLen - Length of message * \param[IN] keyID - Key identifier * \param[IN] isAck - True if it is a acknowledge frame ( Sets ConfFCnt in B0 block ) * \param[IN] devAddr - Device address * \param[IN] dir - Frame direction ( Uplink:0, Downlink:1 ) * \param[IN] fCnt - Frame counter * \param[IN/OUT] b0 - B0 block * \retval - Status of the operation */ static LoRaMacCryptoStatus_t PrepareB0( uint16_t msgLen, KeyIdentifier_t keyID, bool isAck, uint8_t dir, uint32_t devAddr, uint32_t fCnt, uint8_t* b0 ) { if( b0 == 0 ) { return LORAMAC_CRYPTO_ERROR_NPE; } b0[0] = 0x49; /* ST_WORAROUND_BEGIN: These bytes are only used for the LRWAN 1.1.x */ #if ( USE_LRWAN_1_1_X_CRYPTO == 1 ) if( ( isAck == true ) && ( dir == DOWNLINK ) ) { // confFCnt contains the frame counter value modulo 2^16 of the "confirmed" uplink or downlink frame that is being acknowledged uint16_t confFCnt = 0; confFCnt = ( uint16_t )( CryptoCtx.NvmCtx->FCntList.FCntUp % 65536 ); b0[1] = confFCnt & 0xFF; b0[2] = ( confFCnt >> 8 ) & 0xFF; } else #endif /* USE_LRWAN_1_1_X_CRYPTO == 1 */ /* ST_WORAROUND_END */ { b0[1] = 0x00; b0[2] = 0x00; } b0[3] = 0x00; b0[4] = 0x00; b0[5] = dir; b0[6] = devAddr & 0xFF; b0[7] = ( devAddr >> 8 ) & 0xFF; b0[8] = ( devAddr >> 16 ) & 0xFF; b0[9] = ( devAddr >> 24 ) & 0xFF; b0[10] = fCnt & 0xFF; b0[11] = ( fCnt >> 8 ) & 0xFF; b0[12] = ( fCnt >> 16 ) & 0xFF; b0[13] = ( fCnt >> 24 ) & 0xFF; b0[14] = 0x00; b0[15] = msgLen & 0xFF; return LORAMAC_CRYPTO_SUCCESS; } /* * Computes cmac with adding B0 block in front. * * cmac = aes128_cmac(keyID, B0 | msg) * * \param[IN] msg - Message to compute the integrity code * \param[IN] len - Length of message * \param[IN] keyID - Key identifier * \param[IN] isAck - True if it is a acknowledge frame ( Sets ConfFCnt in B0 block ) * \param[IN] devAddr - Device address * \param[IN] dir - Frame direction ( Uplink:0, Downlink:1 ) * \param[IN] fCnt - Frame counter * \param[OUT] cmac - Computed cmac * \retval - Status of the operation */ static LoRaMacCryptoStatus_t ComputeCmacB0( uint8_t* msg, uint16_t len, KeyIdentifier_t keyID, bool isAck, uint8_t dir, uint32_t devAddr, uint32_t fCnt, uint32_t* cmac ) { if( ( msg == 0 ) || ( cmac == 0 ) ) { return LORAMAC_CRYPTO_ERROR_NPE; } if( len > CRYPTO_MAXMESSAGE_SIZE ) { return LORAMAC_CRYPTO_ERROR_BUF_SIZE; } uint8_t micBuff[MIC_BLOCK_BX_SIZE]; // Initialize the first Block PrepareB0( len, keyID, isAck, dir, devAddr, fCnt, micBuff ); if( SecureElementComputeAesCmac( micBuff, msg, len, keyID, cmac ) != SECURE_ELEMENT_SUCCESS ) { return LORAMAC_CRYPTO_ERROR_SECURE_ELEMENT_FUNC; } return LORAMAC_CRYPTO_SUCCESS; } /*! * Verifies cmac with adding B0 block in front. * * \param[IN] msg - Message to compute the integrity code * \param[IN] len - Length of message * \param[IN] keyID - Key identifier * \param[IN] isAck - True if it is a acknowledge frame ( Sets ConfFCnt in B0 block ) * \param[IN] devAddr - Device address * \param[IN] dir - Frame direction ( Uplink:0, Downlink:1 ) * \param[IN] fCnt - Frame counter * \param[in] expectedCmac - Expected cmac * \retval - Status of the operation */ static LoRaMacCryptoStatus_t VerifyCmacB0( uint8_t* msg, uint16_t len, KeyIdentifier_t keyID, bool isAck, uint8_t dir, uint32_t devAddr, uint32_t fCnt, uint32_t expectedCmac ) { if( msg == 0 ) { return LORAMAC_CRYPTO_ERROR_NPE; } if( len > CRYPTO_MAXMESSAGE_SIZE ) { return LORAMAC_CRYPTO_ERROR_BUF_SIZE; } uint8_t micBuff[CRYPTO_BUFFER_SIZE]; memset1( micBuff, 0, CRYPTO_BUFFER_SIZE ); // Initialize the first Block PrepareB0( len, keyID, isAck, dir, devAddr, fCnt, micBuff ); // Copy the given data to the mic computation buffer memcpy1( ( micBuff + MIC_BLOCK_BX_SIZE ), msg, len ); SecureElementStatus_t retval = SECURE_ELEMENT_ERROR; retval = SecureElementVerifyAesCmac( micBuff, ( len + MIC_BLOCK_BX_SIZE ), expectedCmac, keyID ); if( retval == SECURE_ELEMENT_SUCCESS ) { return LORAMAC_CRYPTO_SUCCESS; } else if( retval == SECURE_ELEMENT_FAIL_CMAC ) { return LORAMAC_CRYPTO_FAIL_MIC; } return LORAMAC_CRYPTO_ERROR_SECURE_ELEMENT_FUNC; } #if ( USE_LRWAN_1_1_X_CRYPTO == 1 ) /* * Prpares B1 block for cmac computation. * * \param[IN] msgLen - Length of message * \param[IN] keyID - Key identifier * \param[IN] isAck - True if it is a acknowledge frame ( Sets ConfFCnt in B0 block ) * \param[IN] txDr - Data rate used for the transmission * \param[IN] txCh - Index of the channel used for the transmission * \param[IN] devAddr - Device address * \param[IN] fCntUp - Frame counter * \param[IN/OUT] b0 - B0 block * \retval - Status of the operation */ static LoRaMacCryptoStatus_t PrepareB1( uint16_t msgLen, KeyIdentifier_t keyID, bool isAck, uint8_t txDr, uint8_t txCh, uint32_t devAddr, uint32_t fCntUp, uint8_t* b1 ) { if( b1 == 0 ) { return LORAMAC_CRYPTO_ERROR_NPE; } b1[0] = 0x49; if( isAck == true ) { // confFCnt contains the frame counter value modulo 2^16 of the "confirmed" uplink frame that is being acknowledged uint16_t confFCnt = ( uint16_t )( *CryptoCtx.NvmCtx->LastDownFCnt % 65536 ); b1[1] = confFCnt & 0xFF; b1[2] = ( confFCnt >> 8 ) & 0xFF; } else { b1[1] = 0x00; b1[2] = 0x00; } b1[3] = txDr; b1[4] = txCh; b1[5] = UPLINK; // dir = Uplink b1[6] = devAddr & 0xFF; b1[7] = ( devAddr >> 8 ) & 0xFF; b1[8] = ( devAddr >> 16 ) & 0xFF; b1[9] = ( devAddr >> 24 ) & 0xFF; b1[10] = fCntUp & 0xFF; b1[11] = ( fCntUp >> 8 ) & 0xFF; b1[12] = ( fCntUp >> 16 ) & 0xFF; b1[13] = ( fCntUp >> 24 ) & 0xFF; b1[14] = 0x00; b1[15] = msgLen & 0xFF; return LORAMAC_CRYPTO_SUCCESS; } /* * Computes cmac with adding B1 block in front ( only for Uplink frames LoRaWAN 1.1 ) * * cmac = aes128_cmac(keyID, B1 | msg) * * \param[IN] msg - Message to calculate the Integrity code * \param[IN] len - Length of message * \param[IN] keyID - Key identifier * \param[IN] isAck - True if it is a acknowledge frame ( Sets ConfFCnt in B0 block ) * \param[IN] txDr - Data rate used for the transmission * \param[IN] txCh - Index of the channel used for the transmission * \param[IN] devAddr - Device address * \param[IN] fCntUp - Uplink Frame counter * \param[OUT] cmac - Computed cmac * \retval - Status of the operation */ static LoRaMacCryptoStatus_t ComputeCmacB1( uint8_t* msg, uint16_t len, KeyIdentifier_t keyID, bool isAck, uint8_t txDr, uint8_t txCh, uint32_t devAddr, uint32_t fCntUp, uint32_t* cmac ) { if( ( msg == 0 ) || ( cmac == 0 ) ) { return LORAMAC_CRYPTO_ERROR_NPE; } if( len > CRYPTO_MAXMESSAGE_SIZE ) { return LORAMAC_CRYPTO_ERROR_BUF_SIZE; } uint8_t micBuff[MIC_BLOCK_BX_SIZE]; // Initialize the first Block PrepareB1( len, keyID, isAck, txDr, txCh, devAddr, fCntUp, micBuff ); if( SecureElementComputeAesCmac( micBuff, msg, len, keyID, cmac ) != SECURE_ELEMENT_SUCCESS ) { return LORAMAC_CRYPTO_ERROR_SECURE_ELEMENT_FUNC; } return LORAMAC_CRYPTO_SUCCESS; } #endif /* * Gets security item from list. * * \param[IN] addrID - Address identifier * \param[OUT] keyItem - Key item reference * \retval - Status of the operation */ static LoRaMacCryptoStatus_t GetKeyAddrItem( AddressIdentifier_t addrID, KeyAddr_t** item ) { for( uint8_t i = 0; i < NUM_OF_SEC_CTX; i++ ) { if( KeyAddrList[i].AddrID == addrID ) { *item = &( KeyAddrList[i] ); return LORAMAC_CRYPTO_SUCCESS; } } return LORAMAC_CRYPTO_ERROR_INVALID_ADDR_ID; } /* * Derives a session key as of LoRaWAN versions prior to 1.1.0 * * \param[IN] keyID - Key Identifier for the key to be calculated * \param[IN] joinNonce - Sever nonce * \param[IN] netID - Network Identifier * \param[IN] deviceNonce - Device nonce * \retval - Status of the operation */ static LoRaMacCryptoStatus_t DeriveSessionKey10x( KeyIdentifier_t keyID, uint8_t* joinNonce, uint8_t* netID, uint8_t* devNonce ) { if( ( joinNonce == 0 ) || ( netID == 0 ) || ( devNonce == 0 ) ) { return LORAMAC_CRYPTO_ERROR_NPE; } uint8_t compBase[16] = { 0 }; switch( keyID ) { #if ( USE_LRWAN_1_1_X_CRYPTO == 1 ) case F_NWK_S_INT_KEY: case S_NWK_S_INT_KEY: case NWK_S_ENC_KEY: #else /* USE_LRWAN_1_1_X_CRYPTO == 0 */ case NWK_S_KEY: #endif /* USE_LRWAN_1_1_X_CRYPTO */ compBase[0] = 0x01; break; case APP_S_KEY: compBase[0] = 0x02; break; default: return LORAMAC_CRYPTO_ERROR_INVALID_KEY_ID; } memcpy1( compBase + 1, joinNonce, 3 ); memcpy1( compBase + 4, netID, 3 ); memcpy1( compBase + 7, devNonce, 2 ); if( SecureElementDeriveAndStoreKey( CryptoCtx.NvmCtx->LrWanVersion, compBase, NWK_KEY, keyID ) != SECURE_ELEMENT_SUCCESS ) { return LORAMAC_CRYPTO_ERROR_SECURE_ELEMENT_FUNC; } return LORAMAC_CRYPTO_SUCCESS; } #if ( USE_LRWAN_1_1_X_CRYPTO == 1 ) /* * Derives a session key as of LoRaWAN 1.1.0 * * \param[IN] keyID - Key Identifier for the key to be calculated * \param[IN] joinNonce - Sever nonce * \param[IN] joinEUI - Join Server EUI * \param[IN] deviceNonce - Device nonce * \retval - Status of the operation */ static LoRaMacCryptoStatus_t DeriveSessionKey11x( KeyIdentifier_t keyID, uint8_t* joinNonce, uint8_t* joinEUI, uint8_t* devNonce ) { if( ( joinNonce == 0 ) || ( joinEUI == 0 ) || ( devNonce == 0 ) ) { return LORAMAC_CRYPTO_ERROR_NPE; } uint8_t compBase[16] = { 0 }; KeyIdentifier_t rootKeyId = NWK_KEY; switch( keyID ) { case F_NWK_S_INT_KEY: compBase[0] = 0x01; break; case S_NWK_S_INT_KEY: compBase[0] = 0x03; break; case NWK_S_ENC_KEY: compBase[0] = 0x04; break; case APP_S_KEY: rootKeyId = APP_KEY; compBase[0] = 0x02; break; default: return LORAMAC_CRYPTO_ERROR_INVALID_KEY_ID; } memcpy1( compBase + 1, joinNonce, 3 ); memcpyr( compBase + 4, joinEUI, 8 ); memcpy1( compBase + 12, devNonce, 2 ); if( SecureElementDeriveAndStoreKey( CryptoCtx.NvmCtx->LrWanVersion, compBase, rootKeyId, keyID ) != SECURE_ELEMENT_SUCCESS ) { return LORAMAC_CRYPTO_ERROR_SECURE_ELEMENT_FUNC; } return LORAMAC_CRYPTO_SUCCESS; } /* * Derives a life time session key (JSIntKey or JSEncKey) as of LoRaWAN 1.1.0 * * \param[IN] keyID - Key Identifier for the key to be calculated * \param[IN] devEUI - Device EUI * \retval - Status of the operation */ static LoRaMacCryptoStatus_t DeriveLifeTimeSessionKey( KeyIdentifier_t keyID, uint8_t* devEUI ) { if( devEUI == 0 ) { return LORAMAC_CRYPTO_ERROR_NPE; } uint8_t compBase[16] = { 0 }; switch( keyID ) { case J_S_INT_KEY: compBase[0] = 0x06; break; case J_S_ENC_KEY: compBase[0] = 0x05; break; default: return LORAMAC_CRYPTO_ERROR_INVALID_KEY_ID; } memcpyr( compBase + 1, devEUI, 8 ); if( SecureElementDeriveAndStoreKey( CryptoCtx.NvmCtx->LrWanVersion, compBase, NWK_KEY, keyID ) != SECURE_ELEMENT_SUCCESS ) { return LORAMAC_CRYPTO_ERROR_SECURE_ELEMENT_FUNC; } return LORAMAC_CRYPTO_SUCCESS; } #endif /* * Gets the last received frame counter * * \param[IN] fCntID - Frame counter identifier * \param[IN] lastDown - Last downlink counter value * * \retval - Status of the operation */ static LoRaMacCryptoStatus_t GetLastFcntDown( FCntIdentifier_t fCntID, uint32_t* lastDown ) { if( lastDown == NULL ) { return LORAMAC_CRYPTO_ERROR_NPE; } switch( fCntID ) { case N_FCNT_DOWN: *lastDown = CryptoCtx.NvmCtx->FCntList.NFCntDown; CryptoCtx.NvmCtx->LastDownFCnt = &CryptoCtx.NvmCtx->FCntList.NFCntDown; break; case A_FCNT_DOWN: *lastDown = CryptoCtx.NvmCtx->FCntList.AFCntDown; CryptoCtx.NvmCtx->LastDownFCnt = &CryptoCtx.NvmCtx->FCntList.AFCntDown; break; case FCNT_DOWN: *lastDown = CryptoCtx.NvmCtx->FCntList.FCntDown; CryptoCtx.NvmCtx->LastDownFCnt = &CryptoCtx.NvmCtx->FCntList.FCntDown; break; case MC_FCNT_DOWN_0: *lastDown = CryptoCtx.NvmCtx->FCntList.McFCntDown0; break; #if ( LORAMAC_MAX_MC_CTX > 1 ) case MC_FCNT_DOWN_1: *lastDown = CryptoCtx.NvmCtx->FCntList.McFCntDown1; break; case MC_FCNT_DOWN_2: *lastDown = CryptoCtx.NvmCtx->FCntList.McFCntDown2; break; case MC_FCNT_DOWN_3: *lastDown = CryptoCtx.NvmCtx->FCntList.McFCntDown3; break; #endif /* LORAMAC_MAX_MC_CTX > 1 */ default: return LORAMAC_CRYPTO_FAIL_FCNT_ID; } return LORAMAC_CRYPTO_SUCCESS; } /* * Checks the downlink counter value * * \param[IN] fCntID - Frame counter identifier * \param[IN] currentDown - Current downlink counter value * * \retval - Status of the operation */ static bool CheckFCntDown( FCntIdentifier_t fCntID, uint32_t currentDown ) { uint32_t lastDown = 0; if( GetLastFcntDown( fCntID, &lastDown ) != LORAMAC_CRYPTO_SUCCESS ) { return false; } if( ( currentDown > lastDown ) || // For LoRaWAN 1.0.X only. Allow downlink frames of 0 ( lastDown == FCNT_DOWN_INITAL_VALUE ) ) { return true; } else { return false; } } /*! * Updates the reference downlink counter * * \param[IN] fCntID - Frame counter identifier * \param[IN] currentDown - Current downlink counter value * * \retval - Status of the operation */ static void UpdateFCntDown( FCntIdentifier_t fCntID, uint32_t currentDown ) { switch( fCntID ) { case N_FCNT_DOWN: CryptoCtx.NvmCtx->FCntList.NFCntDown = currentDown; break; case A_FCNT_DOWN: CryptoCtx.NvmCtx->FCntList.AFCntDown = currentDown; break; case FCNT_DOWN: CryptoCtx.NvmCtx->FCntList.FCntDown = currentDown; break; case MC_FCNT_DOWN_0: CryptoCtx.NvmCtx->FCntList.McFCntDown0 = currentDown; break; #if ( LORAMAC_MAX_MC_CTX > 1 ) case MC_FCNT_DOWN_1: CryptoCtx.NvmCtx->FCntList.McFCntDown1 = currentDown; break; case MC_FCNT_DOWN_2: CryptoCtx.NvmCtx->FCntList.McFCntDown2 = currentDown; break; case MC_FCNT_DOWN_3: CryptoCtx.NvmCtx->FCntList.McFCntDown3 = currentDown; break; #endif /* LORAMAC_MAX_MC_CTX > 1 */ default: break; } CryptoCtx.EventCryptoNvmCtxChanged( ); } /*! * Resets the frame counters */ static void ResetFCnts( void ) { CryptoCtx.NvmCtx->FCntList.FCntUp = 0; CryptoCtx.NvmCtx->FCntList.NFCntDown = FCNT_DOWN_INITAL_VALUE; CryptoCtx.NvmCtx->FCntList.AFCntDown = FCNT_DOWN_INITAL_VALUE; CryptoCtx.NvmCtx->FCntList.FCntDown = FCNT_DOWN_INITAL_VALUE; CryptoCtx.NvmCtx->LastDownFCnt = &CryptoCtx.NvmCtx->FCntList.FCntDown; CryptoCtx.NvmCtx->FCntList.McFCntDown0 = FCNT_DOWN_INITAL_VALUE; #if ( LORAMAC_MAX_MC_CTX > 1 ) CryptoCtx.NvmCtx->FCntList.McFCntDown1 = FCNT_DOWN_INITAL_VALUE; CryptoCtx.NvmCtx->FCntList.McFCntDown2 = FCNT_DOWN_INITAL_VALUE; CryptoCtx.NvmCtx->FCntList.McFCntDown3 = FCNT_DOWN_INITAL_VALUE; #endif /* LORAMAC_MAX_MC_CTX > 1 */ CryptoCtx.EventCryptoNvmCtxChanged( ); } /* * Dummy callback in case if the user provides NULL function pointer */ static void DummyCB( void ) { return; } /* * API functions */ LoRaMacCryptoStatus_t LoRaMacCryptoInit( LoRaMacCryptoNvmEvent cryptoNvmCtxChanged ) { // Assign non volatile context CryptoCtx.NvmCtx = &NvmCryptoCtx; // Assign callback if( cryptoNvmCtxChanged != 0 ) { CryptoCtx.EventCryptoNvmCtxChanged = cryptoNvmCtxChanged; } else { CryptoCtx.EventCryptoNvmCtxChanged = DummyCB; } // Initialize with default memset1( ( uint8_t* )CryptoCtx.NvmCtx, 0, sizeof( LoRaMacCryptoNvmCtx_t ) ); // Set default LoRaWAN version CryptoCtx.NvmCtx->LrWanVersion.Fields.Major = 1; CryptoCtx.NvmCtx->LrWanVersion.Fields.Minor = 1; CryptoCtx.NvmCtx->LrWanVersion.Fields.Patch = 1; CryptoCtx.NvmCtx->LrWanVersion.Fields.Revision = 0; // Reset frame counters ResetFCnts( ); return LORAMAC_CRYPTO_SUCCESS; } LoRaMacCryptoStatus_t LoRaMacCryptoSetLrWanVersion( Version_t version ) { CryptoCtx.NvmCtx->LrWanVersion = version; return LORAMAC_CRYPTO_SUCCESS; } LoRaMacCryptoStatus_t LoRaMacCryptoRestoreNvmCtx( void* cryptoNvmCtx ) { // Restore module context if( cryptoNvmCtx != 0 ) { memcpy1( ( uint8_t* )&NvmCryptoCtx, ( uint8_t* )cryptoNvmCtx, CRYPTO_NVM_CTX_SIZE ); return LORAMAC_CRYPTO_SUCCESS; } else { return LORAMAC_CRYPTO_ERROR_NPE; } } void* LoRaMacCryptoGetNvmCtx( size_t* cryptoNvmCtxSize ) { *cryptoNvmCtxSize = CRYPTO_NVM_CTX_SIZE; return &NvmCryptoCtx; } LoRaMacCryptoStatus_t LoRaMacCryptoGetFCntUp( uint32_t* currentUp ) { if( currentUp == NULL ) { return LORAMAC_CRYPTO_ERROR_NPE; } *currentUp = CryptoCtx.NvmCtx->FCntList.FCntUp + 1; return LORAMAC_CRYPTO_SUCCESS; } LoRaMacCryptoStatus_t LoRaMacCryptoGetFCntDown( FCntIdentifier_t fCntID, uint16_t maxFCntGap, uint32_t frameFcnt, uint32_t* currentDown ) { uint32_t lastDown = 0; int32_t fCntDiff = 0; LoRaMacCryptoStatus_t cryptoStatus = LORAMAC_CRYPTO_ERROR; if( currentDown == NULL ) { return LORAMAC_CRYPTO_ERROR_NPE; } cryptoStatus = GetLastFcntDown( fCntID, &lastDown ); if( cryptoStatus != LORAMAC_CRYPTO_SUCCESS ) { return cryptoStatus; } // For LoRaWAN 1.0.X only, allow downlink frames of 0 if( lastDown == FCNT_DOWN_INITAL_VALUE ) { *currentDown = frameFcnt; } else { // Add difference, consider roll-over fCntDiff = ( int32_t )( ( int64_t )frameFcnt - ( int64_t )( lastDown & 0x0000FFFF ) ); if( fCntDiff > 0 ) { // Positive difference *currentDown = lastDown + fCntDiff; } else if( fCntDiff == 0 ) { // Duplicate FCnt value, keep the current value. *currentDown = lastDown; return LORAMAC_CRYPTO_FAIL_FCNT_DUPLICATED; } else { // Negative difference, assume a roll-over of one uint16_t *currentDown = ( lastDown & 0xFFFF0000 ) + 0x10000 + frameFcnt; } } // For LoRaWAN 1.0.X only, check maxFCntGap if( CryptoCtx.NvmCtx->LrWanVersion.Fields.Minor == 0 ) { if( ( ( int64_t )*currentDown - ( int64_t )lastDown ) >= maxFCntGap ) { return LORAMAC_CRYPTO_FAIL_MAX_GAP_FCNT; } } return LORAMAC_CRYPTO_SUCCESS; } LoRaMacCryptoStatus_t LoRaMacCryptoSetMulticastReference( MulticastCtx_t* multicastList ) { if( multicastList == NULL ) { return LORAMAC_CRYPTO_ERROR_NPE; } multicastList[0].DownLinkCounter = &CryptoCtx.NvmCtx->FCntList.McFCntDown0; #if ( LORAMAC_MAX_MC_CTX > 1 ) multicastList[1].DownLinkCounter = &CryptoCtx.NvmCtx->FCntList.McFCntDown1; multicastList[2].DownLinkCounter = &CryptoCtx.NvmCtx->FCntList.McFCntDown2; multicastList[3].DownLinkCounter = &CryptoCtx.NvmCtx->FCntList.McFCntDown3; #endif /* LORAMAC_MAX_MC_CTX > 1 */ return LORAMAC_CRYPTO_SUCCESS; } LoRaMacCryptoStatus_t LoRaMacCryptoSetKey( KeyIdentifier_t keyID, uint8_t* key ) { if( SecureElementSetKey( keyID, key ) != SECURE_ELEMENT_SUCCESS ) { return LORAMAC_CRYPTO_ERROR_SECURE_ELEMENT_FUNC; } if( keyID == APP_KEY ) { // Derive lifetime keys if( LoRaMacCryptoDeriveMcRootKey( keyID ) != LORAMAC_CRYPTO_SUCCESS ) { return LORAMAC_CRYPTO_ERROR_SECURE_ELEMENT_FUNC; } if( LoRaMacCryptoDeriveMcKEKey( MC_ROOT_KEY ) != LORAMAC_CRYPTO_SUCCESS ) { return LORAMAC_CRYPTO_ERROR_SECURE_ELEMENT_FUNC; } } return LORAMAC_CRYPTO_SUCCESS; } LoRaMacCryptoStatus_t LoRaMacCryptoPrepareJoinRequest( LoRaMacMessageJoinRequest_t* macMsg ) { if( macMsg == 0 ) { return LORAMAC_CRYPTO_ERROR_NPE; } KeyIdentifier_t micComputationKeyID = NWK_KEY; // Add device nonce #if ( USE_RANDOM_DEV_NONCE == 1 ) uint32_t devNonce = 0; SecureElementRandomNumber( &devNonce ); CryptoCtx.NvmCtx->DevNonce = devNonce; #else CryptoCtx.NvmCtx->DevNonce++; #endif CryptoCtx.EventCryptoNvmCtxChanged( ); macMsg->DevNonce = CryptoCtx.NvmCtx->DevNonce; #if ( USE_LRWAN_1_1_X_CRYPTO == 1 ) // Derive lifetime session keys if( DeriveLifeTimeSessionKey( J_S_INT_KEY, macMsg->DevEUI ) != LORAMAC_CRYPTO_SUCCESS ) { return LORAMAC_CRYPTO_ERROR; } if( DeriveLifeTimeSessionKey( J_S_ENC_KEY, macMsg->DevEUI ) != LORAMAC_CRYPTO_SUCCESS ) { return LORAMAC_CRYPTO_ERROR; } #endif // Serialize message if( LoRaMacSerializerJoinRequest( macMsg ) != LORAMAC_SERIALIZER_SUCCESS ) { return LORAMAC_CRYPTO_ERROR_SERIALIZER; } // Compute mic if( SecureElementComputeAesCmac( NULL, macMsg->Buffer, ( LORAMAC_JOIN_REQ_MSG_SIZE - LORAMAC_MIC_FIELD_SIZE ), micComputationKeyID, &macMsg->MIC ) != SECURE_ELEMENT_SUCCESS ) { return LORAMAC_CRYPTO_ERROR_SECURE_ELEMENT_FUNC; } // Reserialize message to add the MIC if( LoRaMacSerializerJoinRequest( macMsg ) != LORAMAC_SERIALIZER_SUCCESS ) { return LORAMAC_CRYPTO_ERROR_SERIALIZER; } return LORAMAC_CRYPTO_SUCCESS; } #if ( USE_LRWAN_1_1_X_CRYPTO == 1 ) LoRaMacCryptoStatus_t LoRaMacCryptoPrepareReJoinType1( LoRaMacMessageReJoinType1_t* macMsg ) { if( macMsg == 0 ) { return LORAMAC_CRYPTO_ERROR_NPE; } // Check for RJcount1 overflow if( CryptoCtx.NvmCtx->FCntList.RJcount1 == 65535 ) { return LORAMAC_CRYPTO_ERROR_RJCOUNT1_OVERFLOW; } // Serialize message if( LoRaMacSerializerReJoinType1( macMsg ) != LORAMAC_SERIALIZER_SUCCESS ) { return LORAMAC_CRYPTO_ERROR_SERIALIZER; } // Compute mic // cmac = aes128_cmac(JSIntKey, MHDR | RejoinType | JoinEUI| DevEUI | RJcount1) if( SecureElementComputeAesCmac( NULL, macMsg->Buffer, ( LORAMAC_RE_JOIN_1_MSG_SIZE - LORAMAC_MIC_FIELD_SIZE ), J_S_INT_KEY, &macMsg->MIC ) != SECURE_ELEMENT_SUCCESS ) { return LORAMAC_CRYPTO_ERROR_SECURE_ELEMENT_FUNC; } // Reserialize message to add the MIC if( LoRaMacSerializerReJoinType1( macMsg ) != LORAMAC_SERIALIZER_SUCCESS ) { return LORAMAC_CRYPTO_ERROR_SERIALIZER; } // Increment RJcount1 CryptoCtx.NvmCtx->FCntList.RJcount1++; CryptoCtx.EventCryptoNvmCtxChanged( ); return LORAMAC_CRYPTO_SUCCESS; } LoRaMacCryptoStatus_t LoRaMacCryptoPrepareReJoinType0or2( LoRaMacMessageReJoinType0or2_t* macMsg ) { if( macMsg == 0 ) { return LORAMAC_CRYPTO_ERROR_NPE; } // Check for RJcount0 overflow if( CryptoCtx.RJcount0 == 65535 ) { return LORAMAC_CRYPTO_FAIL_RJCOUNT0_OVERFLOW; } // Serialize message if( LoRaMacSerializerReJoinType0or2( macMsg ) != LORAMAC_SERIALIZER_SUCCESS ) { return LORAMAC_CRYPTO_ERROR_SERIALIZER; } // Compute mic // cmac = aes128_cmac(SNwkSIntKey, MHDR | Rejoin Type | NetID | DevEUI | RJcount0) if( SecureElementComputeAesCmac( NULL, macMsg->Buffer, ( LORAMAC_RE_JOIN_0_2_MSG_SIZE - LORAMAC_MIC_FIELD_SIZE ), S_NWK_S_INT_KEY, &macMsg->MIC ) != SECURE_ELEMENT_SUCCESS ) { return LORAMAC_CRYPTO_ERROR_SECURE_ELEMENT_FUNC; } // Re-serialize message to add the MIC if( LoRaMacSerializerReJoinType0or2( macMsg ) != LORAMAC_SERIALIZER_SUCCESS ) { return LORAMAC_CRYPTO_ERROR_SERIALIZER; } // Increment RJcount0 CryptoCtx.RJcount0++; return LORAMAC_CRYPTO_SUCCESS; } #endif LoRaMacCryptoStatus_t LoRaMacCryptoHandleJoinAccept( JoinReqIdentifier_t joinReqType, uint8_t* joinEUI, LoRaMacMessageJoinAccept_t* macMsg ) { if( ( macMsg == 0 ) || ( joinEUI == 0 ) ) { return LORAMAC_CRYPTO_ERROR_NPE; } LoRaMacCryptoStatus_t retval = LORAMAC_CRYPTO_ERROR; uint8_t decJoinAccept[LORAMAC_JOIN_ACCEPT_FRAME_MAX_SIZE] = { 0 }; uint8_t versionMinor = 0; uint8_t* nonce = ( uint8_t* )&CryptoCtx.NvmCtx->DevNonce; // Nonce selection depending on JoinReqType // JOIN_REQ : CryptoCtx.NvmCtx->DevNonce // REJOIN_REQ_0 : CryptoCtx.RJcount0 // REJOIN_REQ_1 : CryptoCtx.RJcount1 // REJOIN_REQ_2 : CryptoCtx.RJcount0 if( joinReqType == JOIN_REQ ) { // Nothing to be done } #if ( USE_LRWAN_1_1_X_CRYPTO == 1 ) else { // If Join-accept is a reply to a rejoin, the RJcount(0 or 1) replaces DevNonce in the key derivation process. if( ( joinReqType == REJOIN_REQ_0 ) || ( joinReqType == REJOIN_REQ_2 ) ) { nonce = ( uint8_t* )&CryptoCtx.RJcount0; } else { nonce = ( uint8_t* )&CryptoCtx.NvmCtx->FCntList.RJcount1; } } #endif if( SecureElementProcessJoinAccept( joinReqType, joinEUI, ( int16_t )*nonce, macMsg->Buffer, macMsg->BufSize, decJoinAccept, &versionMinor ) != SECURE_ELEMENT_SUCCESS ) { return LORAMAC_CRYPTO_ERROR_SECURE_ELEMENT_FUNC; } memcpy1( macMsg->Buffer, decJoinAccept, macMsg->BufSize ); // Parse the message if( LoRaMacParserJoinAccept( macMsg ) != LORAMAC_PARSER_SUCCESS ) { return LORAMAC_CRYPTO_ERROR_PARSER; } #if ( USE_JOIN_NONCE_COUNTER_CHECK == 1 ) // Check if the JoinNonce is greater as the previous one uint32_t currentJoinNonce = 0; currentJoinNonce = ( uint32_t )macMsg->JoinNonce[0]; currentJoinNonce |= ( ( uint32_t )macMsg->JoinNonce[1] << 8 ); currentJoinNonce |= ( ( uint32_t )macMsg->JoinNonce[2] << 16 ); if( currentJoinNonce > CryptoCtx.NvmCtx->JoinNonce ) { CryptoCtx.NvmCtx->JoinNonce = currentJoinNonce; CryptoCtx.EventCryptoNvmCtxChanged( ); } else { return LORAMAC_CRYPTO_FAIL_JOIN_NONCE; } #endif #if ( USE_LRWAN_1_1_X_CRYPTO == 1 ) if( versionMinor == 1 ) { // Operating in LoRaWAN 1.1.x mode // Derive lifetime keys retval = LoRaMacCryptoDeriveMcRootKey( APP_KEY ); if( retval != LORAMAC_CRYPTO_SUCCESS ) { return retval; } retval = LoRaMacCryptoDeriveMcKEKey( MC_ROOT_KEY ); if( retval != LORAMAC_CRYPTO_SUCCESS ) { return retval; } retval = DeriveSessionKey11x( F_NWK_S_INT_KEY, macMsg->JoinNonce, joinEUI, nonce ); if( retval != LORAMAC_CRYPTO_SUCCESS ) { return retval; } retval = DeriveSessionKey11x( S_NWK_S_INT_KEY, macMsg->JoinNonce, joinEUI, nonce ); if( retval != LORAMAC_CRYPTO_SUCCESS ) { return retval; } retval = DeriveSessionKey11x( NWK_S_ENC_KEY, macMsg->JoinNonce, joinEUI, nonce ); if( retval != LORAMAC_CRYPTO_SUCCESS ) { return retval; } retval = DeriveSessionKey11x( APP_S_KEY, macMsg->JoinNonce, joinEUI, nonce ); if( retval != LORAMAC_CRYPTO_SUCCESS ) { return retval; } } #else // Operating in LoRaWAN 1.0.x mode retval = LoRaMacCryptoDeriveMcRootKey( APP_KEY ); if( retval != LORAMAC_CRYPTO_SUCCESS ) { return retval; } retval = LoRaMacCryptoDeriveMcKEKey( MC_ROOT_KEY ); if( retval != LORAMAC_CRYPTO_SUCCESS ) { return retval; } retval = DeriveSessionKey10x( APP_S_KEY, macMsg->JoinNonce, macMsg->NetID, ( uint8_t* )&CryptoCtx.NvmCtx->DevNonce ); if( retval != LORAMAC_CRYPTO_SUCCESS ) { return retval; } retval = DeriveSessionKey10x( NWK_S_KEY, macMsg->JoinNonce, macMsg->NetID, ( uint8_t* )&CryptoCtx.NvmCtx->DevNonce ); if( retval != LORAMAC_CRYPTO_SUCCESS ) { return retval; } #endif /* USE_LRWAN_1_1_X_CRYPTO */ // Join-Accept is successfully processed // Save LoRaWAN specification version CryptoCtx.NvmCtx->LrWanVersion.Fields.Minor = versionMinor; // Reset frame counters #if ( USE_LRWAN_1_1_X_CRYPTO == 1 ) CryptoCtx.RJcount0 = 0; #endif CryptoCtx.NvmCtx->FCntList.FCntUp = 0; CryptoCtx.NvmCtx->FCntList.FCntDown = FCNT_DOWN_INITAL_VALUE; CryptoCtx.NvmCtx->FCntList.NFCntDown = FCNT_DOWN_INITAL_VALUE; CryptoCtx.NvmCtx->FCntList.AFCntDown = FCNT_DOWN_INITAL_VALUE; CryptoCtx.EventCryptoNvmCtxChanged( ); return LORAMAC_CRYPTO_SUCCESS; } LoRaMacCryptoStatus_t LoRaMacCryptoSecureMessage( uint32_t fCntUp, uint8_t txDr, uint8_t txCh, LoRaMacMessageData_t* macMsg ) { LoRaMacCryptoStatus_t retval = LORAMAC_CRYPTO_ERROR; KeyIdentifier_t payloadDecryptionKeyID = APP_S_KEY; if( macMsg == NULL ) { return LORAMAC_CRYPTO_ERROR_NPE; } if( fCntUp < CryptoCtx.NvmCtx->FCntList.FCntUp ) { return LORAMAC_CRYPTO_FAIL_FCNT_SMALLER; } // Encrypt payload if( macMsg->FPort == 0 ) { // Use network session key #if ( USE_LRWAN_1_1_X_CRYPTO == 1 ) payloadDecryptionKeyID = NWK_S_ENC_KEY; #else /* USE_LRWAN_1_1_X_CRYPTO == 0 */ payloadDecryptionKeyID = NWK_S_KEY; #endif /* USE_LRWAN_1_1_X_CRYPTO */ } if( fCntUp > CryptoCtx.NvmCtx->FCntList.FCntUp ) { retval = PayloadEncrypt( macMsg->FRMPayload, macMsg->FRMPayloadSize, payloadDecryptionKeyID, macMsg->FHDR.DevAddr, UPLINK, fCntUp ); if( retval != LORAMAC_CRYPTO_SUCCESS ) { return retval; } #if ( USE_LRWAN_1_1_X_CRYPTO == 1 ) if( CryptoCtx.NvmCtx->LrWanVersion.Fields.Minor == 1 ) { // Encrypt FOpts retval = FOptsEncrypt( macMsg->FHDR.FCtrl.Bits.FOptsLen, macMsg->FHDR.DevAddr, UPLINK, FCNT_UP, fCntUp, macMsg->FHDR.FOpts ); if( retval != LORAMAC_CRYPTO_SUCCESS ) { return retval; } } #endif } // Serialize message if( LoRaMacSerializerData( macMsg ) != LORAMAC_SERIALIZER_SUCCESS ) { return LORAMAC_CRYPTO_ERROR_SERIALIZER; } // Compute mic #if ( USE_LRWAN_1_1_X_CRYPTO == 1 ) if( CryptoCtx.NvmCtx->LrWanVersion.Fields.Minor == 1 ) { uint32_t cmacS = 0; uint32_t cmacF = 0; // cmacS = aes128_cmac(SNwkSIntKey, B1 | msg) retval = ComputeCmacB1( macMsg->Buffer, ( macMsg->BufSize - LORAMAC_MIC_FIELD_SIZE ), S_NWK_S_INT_KEY, macMsg->FHDR.FCtrl.Bits.Ack, txDr, txCh, macMsg->FHDR.DevAddr, fCntUp, &cmacS ); if( retval != LORAMAC_CRYPTO_SUCCESS ) { return retval; } //cmacF = aes128_cmac(FNwkSIntKey, B0 | msg) retval = ComputeCmacB0( macMsg->Buffer, ( macMsg->BufSize - LORAMAC_MIC_FIELD_SIZE ), F_NWK_S_INT_KEY, macMsg->FHDR.FCtrl.Bits.Ack, UPLINK, macMsg->FHDR.DevAddr, fCntUp, &cmacF ); if( retval != LORAMAC_CRYPTO_SUCCESS ) { return retval; } // MIC = cmacS[0..1] | cmacF[0..1] macMsg->MIC = ( ( cmacF << 16 ) & 0xFFFF0000 ) | ( cmacS & 0x0000FFFF ); } else #endif { // Use network session key #if ( USE_LRWAN_1_1_X_CRYPTO == 1 ) payloadDecryptionKeyID = NWK_S_ENC_KEY; #else /* USE_LRWAN_1_1_X_CRYPTO == 0 */ payloadDecryptionKeyID = NWK_S_KEY; #endif /* USE_LRWAN_1_1_X_CRYPTO */ // MIC = cmacF[0..3] // The IsAck parameter is every time false since the ConfFCnt field is not used in legacy mode. retval = ComputeCmacB0( macMsg->Buffer, ( macMsg->BufSize - LORAMAC_MIC_FIELD_SIZE ), payloadDecryptionKeyID, false, UPLINK, macMsg->FHDR.DevAddr, fCntUp, &macMsg->MIC ); if( retval != LORAMAC_CRYPTO_SUCCESS ) { return retval; } } // Re-serialize message to add the MIC if( LoRaMacSerializerData( macMsg ) != LORAMAC_SERIALIZER_SUCCESS ) { return LORAMAC_CRYPTO_ERROR_SERIALIZER; } CryptoCtx.NvmCtx->FCntList.FCntUp = fCntUp; CryptoCtx.EventCryptoNvmCtxChanged( ); return LORAMAC_CRYPTO_SUCCESS; } LoRaMacCryptoStatus_t LoRaMacCryptoUnsecureMessage( AddressIdentifier_t addrID, uint32_t address, FCntIdentifier_t fCntID, uint32_t fCntDown, LoRaMacMessageData_t* macMsg ) { if( macMsg == 0 ) { return LORAMAC_CRYPTO_ERROR_NPE; } if( CheckFCntDown( fCntID, fCntDown ) == false ) { return LORAMAC_CRYPTO_FAIL_FCNT_SMALLER; } LoRaMacCryptoStatus_t retval = LORAMAC_CRYPTO_ERROR; KeyIdentifier_t payloadDecryptionKeyID = APP_S_KEY; #if ( USE_LRWAN_1_1_X_CRYPTO == 1 ) KeyIdentifier_t micComputationKeyID = S_NWK_S_INT_KEY; #else /* USE_LRWAN_1_1_X_CRYPTO == 0 */ KeyIdentifier_t micComputationKeyID = NWK_S_KEY; #endif /* USE_LRWAN_1_1_X_CRYPTO */ KeyAddr_t* curItem; // Parse the message if( LoRaMacParserData( macMsg ) != LORAMAC_PARSER_SUCCESS ) { return LORAMAC_CRYPTO_ERROR_PARSER; } // Determine current security context retval = GetKeyAddrItem( addrID, &curItem ); if( retval != LORAMAC_CRYPTO_SUCCESS ) { return retval; } payloadDecryptionKeyID = curItem->AppSkey; micComputationKeyID = curItem->NwkSkey; // Check if it is our address if( address != macMsg->FHDR.DevAddr ) { return LORAMAC_CRYPTO_FAIL_ADDRESS; } // Compute mic bool isAck = macMsg->FHDR.FCtrl.Bits.Ack; if( CryptoCtx.NvmCtx->LrWanVersion.Fields.Minor == 0 ) { // In legacy mode the IsAck parameter is forced to be false since the ConfFCnt field is not used. isAck = false; } // Verify mic retval = VerifyCmacB0( macMsg->Buffer, ( macMsg->BufSize - LORAMAC_MIC_FIELD_SIZE ), micComputationKeyID, isAck, DOWNLINK, address, fCntDown, macMsg->MIC ); if( retval != LORAMAC_CRYPTO_SUCCESS ) { return retval; } // Decrypt payload if( macMsg->FPort == 0 ) { // Use network session encryption key #if ( USE_LRWAN_1_1_X_CRYPTO == 1 ) payloadDecryptionKeyID = NWK_S_ENC_KEY; #else /* USE_LRWAN_1_1_X_CRYPTO == 0 */ payloadDecryptionKeyID = NWK_S_KEY; #endif /* USE_LRWAN_1_1_X_CRYPTO */ } retval = PayloadEncrypt( macMsg->FRMPayload, macMsg->FRMPayloadSize, payloadDecryptionKeyID, address, DOWNLINK, fCntDown ); if( retval != LORAMAC_CRYPTO_SUCCESS ) { return retval; } #if ( USE_LRWAN_1_1_X_CRYPTO == 1 ) if( CryptoCtx.NvmCtx->LrWanVersion.Fields.Minor == 1 ) { if( addrID == UNICAST_DEV_ADDR ) { // Decrypt FOpts retval = FOptsEncrypt( macMsg->FHDR.FCtrl.Bits.FOptsLen, address, DOWNLINK, fCntID, fCntDown, macMsg->FHDR.FOpts ); if( retval != LORAMAC_CRYPTO_SUCCESS ) { return retval; } } } #endif UpdateFCntDown( fCntID, fCntDown ); return LORAMAC_CRYPTO_SUCCESS; } LoRaMacCryptoStatus_t LoRaMacCryptoDeriveMcRootKey( KeyIdentifier_t keyID ) { // Prevent other keys than AppKey if( keyID != APP_KEY ) { return LORAMAC_CRYPTO_ERROR_INVALID_KEY_ID; } uint8_t compBase[16] = { 0 }; if( CryptoCtx.NvmCtx->LrWanVersion.Fields.Minor == 1 ) { compBase[0] = 0x20; } if( SecureElementDeriveAndStoreKey( CryptoCtx.NvmCtx->LrWanVersion, compBase, keyID, MC_ROOT_KEY ) != SECURE_ELEMENT_SUCCESS ) { return LORAMAC_CRYPTO_ERROR_SECURE_ELEMENT_FUNC; } return LORAMAC_CRYPTO_SUCCESS; } LoRaMacCryptoStatus_t LoRaMacCryptoDeriveMcKEKey( KeyIdentifier_t keyID ) { // Prevent other keys than McRootKey if( keyID != MC_ROOT_KEY ) { return LORAMAC_CRYPTO_ERROR_INVALID_KEY_ID; } uint8_t compBase[16] = { 0 }; if( SecureElementDeriveAndStoreKey( CryptoCtx.NvmCtx->LrWanVersion, compBase, keyID, MC_KE_KEY ) != SECURE_ELEMENT_SUCCESS ) { return LORAMAC_CRYPTO_ERROR_SECURE_ELEMENT_FUNC; } return LORAMAC_CRYPTO_SUCCESS; } LoRaMacCryptoStatus_t LoRaMacCryptoDeriveMcSessionKeyPair( AddressIdentifier_t addrID, uint32_t mcAddr ) { if( mcAddr == 0 ) { return LORAMAC_CRYPTO_ERROR_NPE; } LoRaMacCryptoStatus_t retval = LORAMAC_CRYPTO_ERROR; // Determine current security context KeyAddr_t* curItem; retval = GetKeyAddrItem( addrID, &curItem ); if( retval != LORAMAC_CRYPTO_SUCCESS ) { return retval; } // McAppSKey = aes128_encrypt(McKey, 0x01 | McAddr | pad16) // McNwkSKey = aes128_encrypt(McKey, 0x02 | McAddr | pad16) uint8_t compBaseAppS[16] = { 0 }; uint8_t compBaseNwkS[16] = { 0 }; compBaseAppS[0] = 0x01; compBaseAppS[1] = mcAddr & 0xFF; compBaseAppS[2] = ( mcAddr >> 8 ) & 0xFF; compBaseAppS[3] = ( mcAddr >> 16 ) & 0xFF; compBaseAppS[4] = ( mcAddr >> 24 ) & 0xFF; compBaseNwkS[0] = 0x02; compBaseNwkS[1] = mcAddr & 0xFF; compBaseNwkS[2] = ( mcAddr >> 8 ) & 0xFF; compBaseNwkS[3] = ( mcAddr >> 16 ) & 0xFF; compBaseNwkS[4] = ( mcAddr >> 24 ) & 0xFF; if( SecureElementDeriveAndStoreKey( CryptoCtx.NvmCtx->LrWanVersion, compBaseAppS, curItem->RootKey, curItem->AppSkey ) != SECURE_ELEMENT_SUCCESS ) { return LORAMAC_CRYPTO_ERROR_SECURE_ELEMENT_FUNC; } if( SecureElementDeriveAndStoreKey( CryptoCtx.NvmCtx->LrWanVersion, compBaseNwkS, curItem->RootKey, curItem->NwkSkey ) != SECURE_ELEMENT_SUCCESS ) { return LORAMAC_CRYPTO_ERROR_SECURE_ELEMENT_FUNC; } return LORAMAC_CRYPTO_SUCCESS; }