/*! * \file RegionCN470.c * * \brief Region implementation for CN470 * * \copyright Revised BSD License, see section \ref LICENSE. * * \code * ______ _ * / _____) _ | | * ( (____ _____ ____ _| |_ _____ ____| |__ * \____ \| ___ | (_ _) ___ |/ ___) _ \ * _____) ) ____| | | || |_| ____( (___| | | | * (______/|_____)_|_|_| \__)_____)\____)_| |_| * (C)2013-2017 Semtech * * ___ _____ _ ___ _ _____ ___ ___ ___ ___ * / __|_ _/_\ / __| |/ / __/ _ \| _ \/ __| __| * \__ \ | |/ _ \ (__| ' <| _| (_) | / (__| _| * |___/ |_/_/ \_\___|_|\_\_| \___/|_|_\\___|___| * embedded.connectivity.solutions=============== * * \endcode * * \author Miguel Luis ( Semtech ) * * \author Gregory Cristian ( Semtech ) * * \author Daniel Jaeckle ( STACKFORCE ) */ #include "utilities.h" #include "RegionCommon.h" #include "RegionCN470.h" // Definitions #define CHANNELS_MASK_SIZE 6 /*! * Region specific context */ typedef struct sRegionCN470NvmCtx { /*! * LoRaMAC channels */ ChannelParams_t Channels[ CN470_MAX_NB_CHANNELS ]; /*! * LoRaMac bands */ Band_t Bands[ CN470_MAX_NB_BANDS ]; /*! * LoRaMac channels mask */ uint16_t ChannelsMask[ CHANNELS_MASK_SIZE ]; /*! * LoRaMac channels default mask */ uint16_t ChannelsDefaultMask[ CHANNELS_MASK_SIZE ]; }RegionCN470NvmCtx_t; /* * Non-volatile module context. */ static RegionCN470NvmCtx_t NvmCtx; // Static functions static int8_t GetNextLowerTxDr( int8_t dr, int8_t minDr ) { uint8_t nextLowerDr = 0; if( dr == minDr ) { nextLowerDr = minDr; } else { nextLowerDr = dr - 1; } return nextLowerDr; } static uint32_t GetBandwidth( uint32_t drIndex ) { switch( BandwidthsCN470[drIndex] ) { default: case 125000: return 0; case 250000: return 1; case 500000: return 2; } } static int8_t LimitTxPower( int8_t txPower, int8_t maxBandTxPower, int8_t datarate, uint16_t* channelsMask ) { int8_t txPowerResult = txPower; // Limit tx power to the band max txPowerResult = MAX( txPower, maxBandTxPower ); return txPowerResult; } static bool VerifyRfFreq( uint32_t freq ) { // Check radio driver support if( Radio.CheckRfFrequency( freq ) == false ) { return false; } // Rx frequencies if( ( freq < CN470_FIRST_RX1_CHANNEL ) || ( freq > CN470_LAST_RX1_CHANNEL ) || ( ( ( freq - ( uint32_t ) CN470_FIRST_RX1_CHANNEL ) % ( uint32_t ) CN470_STEPWIDTH_RX1_CHANNEL ) != 0 ) ) { return false; } // Test for frequency range - take RX and TX frequencies into account if( ( freq < 470300000 ) || ( freq > 509700000 ) ) { return false; } return true; } static TimerTime_t GetTimeOnAir( int8_t datarate, uint16_t pktLen ) { int8_t phyDr = DataratesCN470[datarate]; uint32_t bandwidth = GetBandwidth( datarate ); return Radio.TimeOnAir( MODEM_LORA, bandwidth, phyDr, 1, 8, false, pktLen, true ); } PhyParam_t RegionCN470GetPhyParam( GetPhyParams_t* getPhy ) { PhyParam_t phyParam = { 0 }; switch( getPhy->Attribute ) { case PHY_MIN_RX_DR: { phyParam.Value = CN470_RX_MIN_DATARATE; break; } case PHY_MIN_TX_DR: { phyParam.Value = CN470_TX_MIN_DATARATE; break; } case PHY_DEF_TX_DR: { phyParam.Value = CN470_DEFAULT_DATARATE; break; } case PHY_NEXT_LOWER_TX_DR: { phyParam.Value = GetNextLowerTxDr( getPhy->Datarate, CN470_TX_MIN_DATARATE ); break; } case PHY_MAX_TX_POWER: { phyParam.Value = CN470_MAX_TX_POWER; break; } case PHY_DEF_TX_POWER: { phyParam.Value = CN470_DEFAULT_TX_POWER; break; } case PHY_DEF_ADR_ACK_LIMIT: { phyParam.Value = CN470_ADR_ACK_LIMIT; break; } case PHY_DEF_ADR_ACK_DELAY: { phyParam.Value = CN470_ADR_ACK_DELAY; break; } case PHY_MAX_PAYLOAD: { phyParam.Value = MaxPayloadOfDatarateCN470[getPhy->Datarate]; break; } case PHY_MAX_PAYLOAD_REPEATER: { phyParam.Value = MaxPayloadOfDatarateRepeaterCN470[getPhy->Datarate]; break; } case PHY_DUTY_CYCLE: { phyParam.Value = CN470_DUTY_CYCLE_ENABLED; break; } case PHY_MAX_RX_WINDOW: { phyParam.Value = CN470_MAX_RX_WINDOW; break; } case PHY_RECEIVE_DELAY1: { phyParam.Value = CN470_RECEIVE_DELAY1; break; } case PHY_RECEIVE_DELAY2: { phyParam.Value = CN470_RECEIVE_DELAY2; break; } case PHY_JOIN_ACCEPT_DELAY1: { phyParam.Value = CN470_JOIN_ACCEPT_DELAY1; break; } case PHY_JOIN_ACCEPT_DELAY2: { phyParam.Value = CN470_JOIN_ACCEPT_DELAY2; break; } case PHY_MAX_FCNT_GAP: { phyParam.Value = CN470_MAX_FCNT_GAP; break; } case PHY_ACK_TIMEOUT: { phyParam.Value = ( CN470_ACKTIMEOUT + randr( -CN470_ACK_TIMEOUT_RND, CN470_ACK_TIMEOUT_RND ) ); break; } case PHY_DEF_DR1_OFFSET: { phyParam.Value = CN470_DEFAULT_RX1_DR_OFFSET; break; } case PHY_DEF_RX2_FREQUENCY: { phyParam.Value = CN470_RX_WND_2_FREQ; break; } case PHY_DEF_RX2_DR: { phyParam.Value = CN470_RX_WND_2_DR; break; } case PHY_CHANNELS_MASK: { phyParam.ChannelsMask = NvmCtx.ChannelsMask; break; } case PHY_CHANNELS_DEFAULT_MASK: { phyParam.ChannelsMask = NvmCtx.ChannelsDefaultMask; break; } case PHY_MAX_NB_CHANNELS: { phyParam.Value = CN470_MAX_NB_CHANNELS; break; } case PHY_CHANNELS: { phyParam.Channels = NvmCtx.Channels; break; } case PHY_DEF_UPLINK_DWELL_TIME: case PHY_DEF_DOWNLINK_DWELL_TIME: { phyParam.Value = 0; break; } case PHY_DEF_MAX_EIRP: { phyParam.fValue = CN470_DEFAULT_MAX_EIRP; break; } case PHY_DEF_ANTENNA_GAIN: { phyParam.fValue = CN470_DEFAULT_ANTENNA_GAIN; break; } case PHY_BEACON_CHANNEL_FREQ: { phyParam.Value = CN470_BEACON_CHANNEL_FREQ; break; } case PHY_BEACON_FORMAT: { phyParam.BeaconFormat.BeaconSize = CN470_BEACON_SIZE; phyParam.BeaconFormat.Rfu1Size = CN470_RFU1_SIZE; phyParam.BeaconFormat.Rfu2Size = CN470_RFU2_SIZE; break; } case PHY_BEACON_CHANNEL_DR: { phyParam.Value = CN470_BEACON_CHANNEL_DR; break; } case PHY_BEACON_CHANNEL_STEPWIDTH: { phyParam.Value = CN470_BEACON_CHANNEL_STEPWIDTH; break; } case PHY_PING_SLOT_NB_CHANNELS: { phyParam.Value = CN470_PING_SLOT_NB_CHANNELS; break; } case PHY_BEACON_NB_CHANNELS: { phyParam.Value = CN470_BEACON_NB_CHANNELS; break; } case PHY_PING_SLOT_CHANNEL_FREQ: { phyParam.Value = CN470_PING_SLOT_CHANNEL_FREQ; break; } case PHY_PING_SLOT_CHANNEL_DR: { phyParam.Value = CN470_PING_SLOT_CHANNEL_DR; break; } case PHY_SF_FROM_DR: { phyParam.Value = DataratesCN470[getPhy->Datarate]; break; } case PHY_BW_FROM_DR: { phyParam.Value = GetBandwidth( getPhy->Datarate ); break; } default: { break; } } return phyParam; } void RegionCN470SetBandTxDone( SetBandTxDoneParams_t* txDone ) { RegionCommonSetBandTxDone( &NvmCtx.Bands[NvmCtx.Channels[txDone->Channel].Band], txDone->LastTxAirTime, txDone->Joined, txDone->ElapsedTimeSinceStartUp ); } void RegionCN470InitDefaults( InitDefaultsParams_t* params ) { Band_t bands[CN470_MAX_NB_BANDS] = { CN470_BAND0 }; switch( params->Type ) { case INIT_TYPE_DEFAULTS: { // Default bands memcpy1( ( uint8_t* )NvmCtx.Bands, ( uint8_t* )bands, sizeof( Band_t ) * CN470_MAX_NB_BANDS ); // Channels for( uint8_t i = 0; i < CN470_MAX_NB_CHANNELS; i++ ) { // 125 kHz channels NvmCtx.Channels[i].Frequency = 470300000 + i * 200000; NvmCtx.Channels[i].DrRange.Value = ( DR_5 << 4 ) | DR_0; NvmCtx.Channels[i].Band = 0; } // Initialize channels default mask /* ST_WORKAROUND_BEGIN: Hybrid mode */ #if ( HYBRID_ENABLED == 1 ) NvmCtx.ChannelsDefaultMask[0] = 0x00FF; NvmCtx.ChannelsDefaultMask[1] = 0x0000; NvmCtx.ChannelsDefaultMask[2] = 0x0000; NvmCtx.ChannelsDefaultMask[3] = 0x0000; NvmCtx.ChannelsDefaultMask[4] = 0x0000; NvmCtx.ChannelsDefaultMask[5] = 0x0000; #else NvmCtx.ChannelsDefaultMask[0] = 0xFFFF; NvmCtx.ChannelsDefaultMask[1] = 0xFFFF; NvmCtx.ChannelsDefaultMask[2] = 0xFFFF; NvmCtx.ChannelsDefaultMask[3] = 0xFFFF; NvmCtx.ChannelsDefaultMask[4] = 0xFFFF; NvmCtx.ChannelsDefaultMask[5] = 0xFFFF; #endif /* HYBRID_ENABLED == 1 */ /* ST_WORKAROUND_END */ // Copy channels default mask RegionCommonChanMaskCopy( NvmCtx.ChannelsMask, NvmCtx.ChannelsDefaultMask, CHANNELS_MASK_SIZE ); break; } case INIT_TYPE_RESET_TO_DEFAULT_CHANNELS: { // Intentional fallthrough } case INIT_TYPE_ACTIVATE_DEFAULT_CHANNELS: { // Copy channels default mask RegionCommonChanMaskCopy( NvmCtx.ChannelsMask, NvmCtx.ChannelsDefaultMask, CHANNELS_MASK_SIZE ); break; } case INIT_TYPE_RESTORE_CTX: { if( params->NvmCtx != 0 ) { memcpy1( (uint8_t*) &NvmCtx, (uint8_t*) params->NvmCtx, sizeof( NvmCtx ) ); } break; } default: { break; } } } void* RegionCN470GetNvmCtx( GetNvmCtxParams_t* params ) { params->nvmCtxSize = sizeof( RegionCN470NvmCtx_t ); return &NvmCtx; } bool RegionCN470Verify( VerifyParams_t* verify, PhyAttribute_t phyAttribute ) { switch( phyAttribute ) { case PHY_FREQUENCY: { return VerifyRfFreq( verify->Frequency ); } case PHY_TX_DR: case PHY_DEF_TX_DR: { return RegionCommonValueInRange( verify->DatarateParams.Datarate, CN470_TX_MIN_DATARATE, CN470_TX_MAX_DATARATE ); } case PHY_RX_DR: { return RegionCommonValueInRange( verify->DatarateParams.Datarate, CN470_RX_MIN_DATARATE, CN470_RX_MAX_DATARATE ); } case PHY_DEF_TX_POWER: case PHY_TX_POWER: { // Remark: switched min and max! return RegionCommonValueInRange( verify->TxPower, CN470_MAX_TX_POWER, CN470_MIN_TX_POWER ); } case PHY_DUTY_CYCLE: { return CN470_DUTY_CYCLE_ENABLED; } default: return false; } } void RegionCN470ApplyCFList( ApplyCFListParams_t* applyCFList ) { // Size of the optional CF list must be 16 byte if( applyCFList->Size != 16 ) { return; } // Last byte CFListType must be 0x01 to indicate the CFList contains a series of ChMask fields if( applyCFList->Payload[15] != 0x01 ) { return; } // ChMask0 - ChMask5 must be set (every ChMask has 16 bit) for( uint8_t chMaskItr = 0, cntPayload = 0; chMaskItr <= 5; chMaskItr++, cntPayload+=2 ) { NvmCtx.ChannelsMask[chMaskItr] = (uint16_t) (0x00FF & applyCFList->Payload[cntPayload]); NvmCtx.ChannelsMask[chMaskItr] |= (uint16_t) (applyCFList->Payload[cntPayload+1] << 8); } } bool RegionCN470ChanMaskSet( ChanMaskSetParams_t* chanMaskSet ) { switch( chanMaskSet->ChannelsMaskType ) { case CHANNELS_MASK: { RegionCommonChanMaskCopy( NvmCtx.ChannelsMask, chanMaskSet->ChannelsMaskIn, 6 ); break; } case CHANNELS_DEFAULT_MASK: { RegionCommonChanMaskCopy( NvmCtx.ChannelsDefaultMask, chanMaskSet->ChannelsMaskIn, 6 ); break; } default: return false; } return true; } void RegionCN470ComputeRxWindowParameters( int8_t datarate, uint8_t minRxSymbols, uint32_t rxError, RxConfigParams_t *rxConfigParams ) { /* ST_WORKAROUND_BEGIN: remove float/double */ uint32_t tSymbol = 0; /* ST_WORKAROUND_END */ // Get the datarate, perform a boundary check rxConfigParams->Datarate = MIN( datarate, CN470_RX_MAX_DATARATE ); rxConfigParams->Bandwidth = GetBandwidth( rxConfigParams->Datarate ); tSymbol = RegionCommonComputeSymbolTimeLoRa( DataratesCN470[rxConfigParams->Datarate], BandwidthsCN470[rxConfigParams->Datarate] ); RegionCommonComputeRxWindowParameters( tSymbol, minRxSymbols, rxError, Radio.GetWakeupTime( ), &rxConfigParams->WindowTimeout, &rxConfigParams->WindowOffset ); } bool RegionCN470RxConfig( RxConfigParams_t* rxConfig, int8_t* datarate ) { int8_t dr = rxConfig->Datarate; uint8_t maxPayload = 0; int8_t phyDr = 0; uint32_t frequency = rxConfig->Frequency; if( Radio.GetStatus( ) != RF_IDLE ) { return false; } if( rxConfig->RxSlot == RX_SLOT_WIN_1 ) { // Apply window 1 frequency frequency = CN470_FIRST_RX1_CHANNEL + ( rxConfig->Channel % 48 ) * CN470_STEPWIDTH_RX1_CHANNEL; } // Read the physical datarate from the datarates table phyDr = DataratesCN470[dr]; Radio.SetChannel( frequency ); // Radio configuration Radio.SetRxConfig( MODEM_LORA, rxConfig->Bandwidth, phyDr, 1, 0, 8, rxConfig->WindowTimeout, false, 0, false, 0, 0, true, rxConfig->RxContinuous ); if( rxConfig->RepeaterSupport == true ) { maxPayload = MaxPayloadOfDatarateRepeaterCN470[dr]; } else { maxPayload = MaxPayloadOfDatarateCN470[dr]; } Radio.SetMaxPayloadLength( MODEM_LORA, maxPayload + LORAMAC_FRAME_PAYLOAD_OVERHEAD_SIZE ); /* ST_WORKAROUND_BEGIN: Print Rx config */ RegionCommonRxConfigPrint(rxConfig->RxSlot, frequency, dr); /* ST_WORKAROUND_END */ *datarate = (uint8_t) dr; return true; } bool RegionCN470TxConfig( TxConfigParams_t* txConfig, int8_t* txPower, TimerTime_t* txTimeOnAir ) { int8_t phyDr = DataratesCN470[txConfig->Datarate]; int8_t txPowerLimited = LimitTxPower( txConfig->TxPower, NvmCtx.Bands[NvmCtx.Channels[txConfig->Channel].Band].TxMaxPower, txConfig->Datarate, NvmCtx.ChannelsMask ); int8_t phyTxPower = 0; // Calculate physical TX power phyTxPower = RegionCommonComputeTxPower( txPowerLimited, txConfig->MaxEirp, txConfig->AntennaGain ); // Setup the radio frequency Radio.SetChannel( NvmCtx.Channels[txConfig->Channel].Frequency ); Radio.SetTxConfig( MODEM_LORA, phyTxPower, 0, 0, phyDr, 1, 8, false, true, 0, 0, false, 4000 ); /* ST_WORKAROUND_BEGIN: Print Tx config */ RegionCommonTxConfigPrint(NvmCtx.Channels[txConfig->Channel].Frequency, txConfig->Datarate); /* ST_WORKAROUND_END */ // Setup maximum payload length of the radio driver Radio.SetMaxPayloadLength( MODEM_LORA, txConfig->PktLen ); // Update time-on-air *txTimeOnAir = GetTimeOnAir( txConfig->Datarate, txConfig->PktLen ); *txPower = txPowerLimited; return true; } uint8_t RegionCN470LinkAdrReq( LinkAdrReqParams_t* linkAdrReq, int8_t* drOut, int8_t* txPowOut, uint8_t* nbRepOut, uint8_t* nbBytesParsed ) { uint8_t status = 0x07; RegionCommonLinkAdrParams_t linkAdrParams = { 0 }; uint8_t nextIndex = 0; uint8_t bytesProcessed = 0; uint16_t channelsMask[6] = { 0, 0, 0, 0, 0, 0 }; GetPhyParams_t getPhy; PhyParam_t phyParam; RegionCommonLinkAdrReqVerifyParams_t linkAdrVerifyParams; // Initialize local copy of channels mask RegionCommonChanMaskCopy( channelsMask, NvmCtx.ChannelsMask, 6 ); while( bytesProcessed < linkAdrReq->PayloadSize ) { // Get ADR request parameters nextIndex = RegionCommonParseLinkAdrReq( &( linkAdrReq->Payload[bytesProcessed] ), &linkAdrParams ); if( nextIndex == 0 ) break; // break loop, since no more request has been found // Update bytes processed bytesProcessed += nextIndex; // Revert status, as we only check the last ADR request for the channel mask KO status = 0x07; if( linkAdrParams.ChMaskCtrl == 6 ) { // Enable all 125 kHz channels channelsMask[0] = 0xFFFF; channelsMask[1] = 0xFFFF; channelsMask[2] = 0xFFFF; channelsMask[3] = 0xFFFF; channelsMask[4] = 0xFFFF; channelsMask[5] = 0xFFFF; } else if( linkAdrParams.ChMaskCtrl == 7 ) { status &= 0xFE; // Channel mask KO } else { for( uint8_t i = 0; i < 16; i++ ) { if( ( ( linkAdrParams.ChMask & ( 1 << i ) ) != 0 ) && ( NvmCtx.Channels[linkAdrParams.ChMaskCtrl * 16 + i].Frequency == 0 ) ) {// Trying to enable an undefined channel status &= 0xFE; // Channel mask KO } } channelsMask[linkAdrParams.ChMaskCtrl] = linkAdrParams.ChMask; } } // Get the minimum possible datarate getPhy.Attribute = PHY_MIN_TX_DR; getPhy.UplinkDwellTime = linkAdrReq->UplinkDwellTime; phyParam = RegionCN470GetPhyParam( &getPhy ); linkAdrVerifyParams.Status = status; linkAdrVerifyParams.AdrEnabled = linkAdrReq->AdrEnabled; linkAdrVerifyParams.Datarate = linkAdrParams.Datarate; linkAdrVerifyParams.TxPower = linkAdrParams.TxPower; linkAdrVerifyParams.NbRep = linkAdrParams.NbRep; linkAdrVerifyParams.CurrentDatarate = linkAdrReq->CurrentDatarate; linkAdrVerifyParams.CurrentTxPower = linkAdrReq->CurrentTxPower; linkAdrVerifyParams.CurrentNbRep = linkAdrReq->CurrentNbRep; linkAdrVerifyParams.NbChannels = CN470_MAX_NB_CHANNELS; linkAdrVerifyParams.ChannelsMask = channelsMask; linkAdrVerifyParams.MinDatarate = ( int8_t )phyParam.Value; linkAdrVerifyParams.MaxDatarate = CN470_TX_MAX_DATARATE; linkAdrVerifyParams.Channels = NvmCtx.Channels; linkAdrVerifyParams.MinTxPower = CN470_MIN_TX_POWER; linkAdrVerifyParams.MaxTxPower = CN470_MAX_TX_POWER; linkAdrVerifyParams.Version = linkAdrReq->Version; // Verify the parameters and update, if necessary status = RegionCommonLinkAdrReqVerifyParams( &linkAdrVerifyParams, &linkAdrParams.Datarate, &linkAdrParams.TxPower, &linkAdrParams.NbRep ); // Update channelsMask if everything is correct if( status == 0x07 ) { // Copy Mask RegionCommonChanMaskCopy( NvmCtx.ChannelsMask, channelsMask, 6 ); } // Update status variables *drOut = linkAdrParams.Datarate; *txPowOut = linkAdrParams.TxPower; *nbRepOut = linkAdrParams.NbRep; *nbBytesParsed = bytesProcessed; return status; } uint8_t RegionCN470RxParamSetupReq( RxParamSetupReqParams_t* rxParamSetupReq ) { uint8_t status = 0x07; // Verify radio frequency if( VerifyRfFreq( rxParamSetupReq->Frequency ) == false ) { status &= 0xFE; // Channel frequency KO } // Verify datarate if( RegionCommonValueInRange( rxParamSetupReq->Datarate, CN470_RX_MIN_DATARATE, CN470_RX_MAX_DATARATE ) == false ) { status &= 0xFD; // Datarate KO } // Verify datarate offset if( RegionCommonValueInRange( rxParamSetupReq->DrOffset, CN470_MIN_RX1_DR_OFFSET, CN470_MAX_RX1_DR_OFFSET ) == false ) { status &= 0xFB; // Rx1DrOffset range KO } return status; } uint8_t RegionCN470NewChannelReq( NewChannelReqParams_t* newChannelReq ) { // Datarate and frequency KO return 0; } int8_t RegionCN470TxParamSetupReq( TxParamSetupReqParams_t* txParamSetupReq ) { return -1; } uint8_t RegionCN470DlChannelReq( DlChannelReqParams_t* dlChannelReq ) { return 0; } int8_t RegionCN470AlternateDr( int8_t currentDr, AlternateDrType_t type ) { return currentDr; } LoRaMacStatus_t RegionCN470NextChannel( NextChanParams_t* nextChanParams, uint8_t* channel, TimerTime_t* time, TimerTime_t* aggregatedTimeOff ) { uint8_t nbEnabledChannels = 0; uint8_t nbRestrictedChannels = 0; uint8_t enabledChannels[CN470_MAX_NB_CHANNELS] = { 0 }; RegionCommonIdentifyChannelsParam_t identifyChannelsParam; RegionCommonCountNbOfEnabledChannelsParams_t countChannelsParams; LoRaMacStatus_t status = LORAMAC_STATUS_NO_CHANNEL_FOUND; // Count 125kHz channels if( RegionCommonCountChannels( NvmCtx.ChannelsMask, 0, 6 ) == 0 ) { // Reactivate default channels NvmCtx.ChannelsMask[0] = 0xFFFF; NvmCtx.ChannelsMask[1] = 0xFFFF; NvmCtx.ChannelsMask[2] = 0xFFFF; NvmCtx.ChannelsMask[3] = 0xFFFF; NvmCtx.ChannelsMask[4] = 0xFFFF; NvmCtx.ChannelsMask[5] = 0xFFFF; } // Search how many channels are enabled countChannelsParams.Joined = nextChanParams->Joined; countChannelsParams.Datarate = nextChanParams->Datarate; countChannelsParams.ChannelsMask = NvmCtx.ChannelsMask; countChannelsParams.Channels = NvmCtx.Channels; countChannelsParams.Bands = NvmCtx.Bands; countChannelsParams.MaxNbChannels = CN470_MAX_NB_CHANNELS; countChannelsParams.JoinChannels = 0; identifyChannelsParam.AggrTimeOff = nextChanParams->AggrTimeOff; identifyChannelsParam.LastAggrTx = nextChanParams->LastAggrTx; identifyChannelsParam.DutyCycleEnabled = nextChanParams->DutyCycleEnabled; identifyChannelsParam.MaxBands = CN470_MAX_NB_BANDS; identifyChannelsParam.ElapsedTimeSinceStartUp = nextChanParams->ElapsedTimeSinceStartUp; identifyChannelsParam.LastTxIsJoinRequest = nextChanParams->LastTxIsJoinRequest; identifyChannelsParam.ExpectedTimeOnAir = GetTimeOnAir( nextChanParams->Datarate, nextChanParams->PktLen ); identifyChannelsParam.CountNbOfEnabledChannelsParam = &countChannelsParams; status = RegionCommonIdentifyChannels( &identifyChannelsParam, aggregatedTimeOff, enabledChannels, &nbEnabledChannels, &nbRestrictedChannels, time ); if( status == LORAMAC_STATUS_OK ) { // We found a valid channel *channel = enabledChannels[randr( 0, nbEnabledChannels - 1 )]; } return status; } LoRaMacStatus_t RegionCN470ChannelAdd( ChannelAddParams_t* channelAdd ) { return LORAMAC_STATUS_PARAMETER_INVALID; } bool RegionCN470ChannelsRemove( ChannelRemoveParams_t* channelRemove ) { return LORAMAC_STATUS_PARAMETER_INVALID; } void RegionCN470SetContinuousWave( ContinuousWaveParams_t* continuousWave ) { int8_t txPowerLimited = LimitTxPower( continuousWave->TxPower, NvmCtx.Bands[NvmCtx.Channels[continuousWave->Channel].Band].TxMaxPower, continuousWave->Datarate, NvmCtx.ChannelsMask ); int8_t phyTxPower = 0; uint32_t frequency = NvmCtx.Channels[continuousWave->Channel].Frequency; // Calculate physical TX power phyTxPower = RegionCommonComputeTxPower( txPowerLimited, continuousWave->MaxEirp, continuousWave->AntennaGain ); Radio.SetTxContinuousWave( frequency, phyTxPower, continuousWave->Timeout ); } uint8_t RegionCN470ApplyDrOffset( uint8_t downlinkDwellTime, int8_t dr, int8_t drOffset ) { int8_t datarate = dr - drOffset; if( datarate < 0 ) { datarate = DR_0; } return datarate; } void RegionCN470RxBeaconSetup( RxBeaconSetup_t* rxBeaconSetup, uint8_t* outDr ) { RegionCommonRxBeaconSetupParams_t regionCommonRxBeaconSetup; regionCommonRxBeaconSetup.Datarates = DataratesCN470; regionCommonRxBeaconSetup.Frequency = rxBeaconSetup->Frequency; regionCommonRxBeaconSetup.BeaconSize = CN470_BEACON_SIZE; regionCommonRxBeaconSetup.BeaconDatarate = CN470_BEACON_CHANNEL_DR; regionCommonRxBeaconSetup.BeaconChannelBW = CN470_BEACON_CHANNEL_BW; regionCommonRxBeaconSetup.RxTime = rxBeaconSetup->RxTime; regionCommonRxBeaconSetup.SymbolTimeout = rxBeaconSetup->SymbolTimeout; RegionCommonRxBeaconSetup( ®ionCommonRxBeaconSetup ); // Store downlink datarate *outDr = CN470_BEACON_CHANNEL_DR; }