/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file Examples/ADC/ADC_MultiChannelSingleConversion/Src/main.c * @author MCD Application Team * @brief This example provides a short description of how to use the ADC * peripheral with sequencer, to convert several channels. * Channels converted are 1 channel on external pin and 2 internal * channels (VrefInt and temperature sensor). * Moreover, voltage and temperature are then computed. ****************************************************************************** * @attention * * Copyright (c) 2020 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* Definitions of environment analog values */ /* Value of analog reference voltage (Vref+), connected to analog voltage */ /* supply Vdda (unit: mV). */ #define VDDA_APPLI (3300U) /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ ADC_HandleTypeDef hadc; DMA_HandleTypeDef hdma_adc; /* USER CODE BEGIN PV */ /* Private variables ---------------------------------------------------------*/ /* ADC handler declaration */ /* Variables for ADC conversion data */ __IO uint16_t aADCxConvertedData[ADC_CONVERTED_DATA_BUFFER_SIZE]; /* ADC group regular conversion data (array of data) */ /* Variable to report status of DMA transfer of ADC group regular conversions */ /* 0: DMA transfer is not completed */ /* 1: DMA transfer is completed */ /* 2: DMA transfer has not yet been started yet (initial state) */ __IO uint8_t ubDmaTransferStatus = 2; /* Variable set into DMA interruption callback */ /* Variable to manage push button on board: interface between ExtLine interruption and main program */ __IO uint8_t ubUserButtonClickEvent = RESET; /* Event detection: Set after User Button interrupt */ /* Variables for ADC conversion data computation to physical values */ __IO uint16_t uhADCxConvertedData_VoltageGPIO_mVolt = 0U; /* Value of voltage on GPIO pin (on which is mapped ADC channel) calculated from ADC conversion data (unit: mV) */ __IO uint16_t uhADCxConvertedData_VrefInt_mVolt = 0U; /* Value of internal voltage reference VrefInt calculated from ADC conversion data (unit: mV) */ __IO int16_t hADCxConvertedData_Temperature_DegreeCelsius = 0U; /* Value of temperature calculated from ADC conversion data (unit: degree Celsius) */ __IO uint16_t uhADCxConvertedData_VrefAnalog_mVolt = 0U; /* Value of analog reference voltage (Vref+), connected to analog voltage supply Vdda, calculated from ADC conversion data (unit: mV) */ /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_DMA_Init(void); static void MX_ADC_Init(void); /* USER CODE BEGIN PFP */ /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ uint32_t tmp_index_adc_converted_data = 0; /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_DMA_Init(); MX_ADC_Init(); /* USER CODE BEGIN 2 */ for (tmp_index_adc_converted_data = 0; tmp_index_adc_converted_data < ADC_CONVERTED_DATA_BUFFER_SIZE; tmp_index_adc_converted_data++) { aADCxConvertedData[tmp_index_adc_converted_data] = VAR_CONVERTED_DATA_INIT_VALUE; } /* Initialize LED on board */ BSP_LED_Init(LED2); /* Configure User push-button (B1) in Interrupt mode */ BSP_PB_Init(BUTTON_SW1, BUTTON_MODE_EXTI); /* Run the ADC calibration */ if (HAL_ADCEx_Calibration_Start(&hadc) != HAL_OK) { /* Calibration Error */ Error_Handler(); } /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ /*## Start ADC conversions ###############################################*/ /* Start ADC group regular conversion with DMA */ if (HAL_ADC_Start_DMA(&hadc, (uint32_t *)aADCxConvertedData, ADC_CONVERTED_DATA_BUFFER_SIZE ) != HAL_OK) { /* ADC conversion start error */ Error_Handler(); } while (1) { /* Wait for event on push button to perform following actions */ while ((ubUserButtonClickEvent) == RESET) { } /* Reset variable for next loop iteration (with debounce) */ HAL_Delay(200); ubUserButtonClickEvent = RESET; /* Start ADC conversion */ /* Since sequencer is enabled in discontinuous mode, this will perform */ /* the conversion of the next rank in sequencer. */ /* Note: For this example, conversion is triggered by software start, */ /* therefore "HAL_ADC_Start()" must be called for each conversion. */ /* Since DMA transfer has been initiated previously by function */ /* "HAL_ADC_Start_DMA()", this function will keep DMA transfer */ /* active. */ if (HAL_ADC_Start(&hadc) != HAL_OK) { Error_Handler(); } /* Wait for ADC conversion and DMA transfer completion (update of variable ubDmaTransferStatus) */ HAL_Delay(10); /* Check whether ADC has converted all ranks of the sequence */ if (ubDmaTransferStatus == 1) { /* Computation of ADC conversions raw data to physical values */ /* using LL ADC driver helper macro. */ /* Note: ADC results are transferred into array "aADCxConvertedData" */ /* in the order of their rank in ADC sequencer. */ uhADCxConvertedData_VoltageGPIO_mVolt = __LL_ADC_CALC_DATA_TO_VOLTAGE(VDDA_APPLI, aADCxConvertedData[0], LL_ADC_RESOLUTION_12B); uhADCxConvertedData_VrefInt_mVolt = __LL_ADC_CALC_DATA_TO_VOLTAGE(VDDA_APPLI, aADCxConvertedData[1], LL_ADC_RESOLUTION_12B); hADCxConvertedData_Temperature_DegreeCelsius = __LL_ADC_CALC_TEMPERATURE(VDDA_APPLI, aADCxConvertedData[2], LL_ADC_RESOLUTION_12B); /* Optionally, for this example purpose, calculate analog reference */ /* voltage (Vref+) from ADC conversion of internal voltage reference */ /* VrefInt. */ /* This voltage should correspond to value of literal "VDDA_APPLI". */ /* Note: This calculation can be performed when value of voltage Vref+ */ /* is unknown in the application. */ uhADCxConvertedData_VrefAnalog_mVolt = __LL_ADC_CALC_VREFANALOG_VOLTAGE(aADCxConvertedData[1], LL_ADC_RESOLUTION_12B); /* Clear DMA buffer when filled before refilling it */ for (tmp_index_adc_converted_data = 0; tmp_index_adc_converted_data < ADC_CONVERTED_DATA_BUFFER_SIZE; tmp_index_adc_converted_data++) { aADCxConvertedData[tmp_index_adc_converted_data] = VAR_CONVERTED_DATA_INIT_VALUE; } /* Update status variable of DMA transfer */ ubDmaTransferStatus = 0; } /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ /* Note: LED state depending on DMA transfer status is set into DMA */ /* IRQ handler, refer to functions "HAL_ADC_ConvCpltCallback()" */ /* and "HAL_ADC_ConvHalfCpltCallback()". */ /* Note: ADC conversions data are stored into array */ /* "aADCxConvertedData" */ /* (for debug: see variable content into watch window). */ } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Configure the main internal regulator output voltage */ __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1); /** Initializes the CPU, AHB and APB buses clocks */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI|RCC_OSCILLATORTYPE_MSI; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.MSIState = RCC_MSI_ON; RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT; RCC_OscInitStruct.MSICalibrationValue = RCC_MSICALIBRATION_DEFAULT; RCC_OscInitStruct.MSIClockRange = RCC_MSIRANGE_8; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_MSI; RCC_OscInitStruct.PLL.PLLM = RCC_PLLM_DIV4; RCC_OscInitStruct.PLL.PLLN = 24; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2; RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2; RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Configure the SYSCLKSource, HCLK, PCLK1 and PCLK2 clocks dividers */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK3|RCC_CLOCKTYPE_HCLK |RCC_CLOCKTYPE_SYSCLK|RCC_CLOCKTYPE_PCLK1 |RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; RCC_ClkInitStruct.AHBCLK3Divider = RCC_SYSCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK) { Error_Handler(); } } /** * @brief ADC Initialization Function * @param None * @retval None */ static void MX_ADC_Init(void) { /* USER CODE BEGIN ADC_Init 0 */ /* USER CODE END ADC_Init 0 */ ADC_ChannelConfTypeDef sConfig = {0}; /* USER CODE BEGIN ADC_Init 1 */ /* USER CODE END ADC_Init 1 */ /** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion) */ hadc.Instance = ADC; hadc.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV1; hadc.Init.Resolution = ADC_RESOLUTION_12B; hadc.Init.DataAlign = ADC_DATAALIGN_RIGHT; hadc.Init.ScanConvMode = ADC_SCAN_ENABLE; hadc.Init.EOCSelection = ADC_EOC_SINGLE_CONV; hadc.Init.LowPowerAutoWait = DISABLE; hadc.Init.LowPowerAutoPowerOff = DISABLE; hadc.Init.ContinuousConvMode = DISABLE; hadc.Init.NbrOfConversion = 3; hadc.Init.DiscontinuousConvMode = ENABLE; hadc.Init.ExternalTrigConv = ADC_SOFTWARE_START; hadc.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE; hadc.Init.DMAContinuousRequests = DISABLE; hadc.Init.Overrun = ADC_OVR_DATA_OVERWRITTEN; hadc.Init.SamplingTimeCommon1 = ADC_SAMPLETIME_39CYCLES_5; hadc.Init.SamplingTimeCommon2 = ADC_SAMPLETIME_160CYCLES_5; hadc.Init.OversamplingMode = DISABLE; hadc.Init.TriggerFrequencyMode = ADC_TRIGGER_FREQ_HIGH; if (HAL_ADC_Init(&hadc) != HAL_OK) { Error_Handler(); } /** Configure Regular Channel */ sConfig.Channel = ADC_CHANNEL_4; sConfig.Rank = ADC_REGULAR_RANK_1; sConfig.SamplingTime = ADC_SAMPLINGTIME_COMMON_1; if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK) { Error_Handler(); } /** Configure Regular Channel */ sConfig.Channel = ADC_CHANNEL_VREFINT; sConfig.Rank = ADC_REGULAR_RANK_2; sConfig.SamplingTime = ADC_SAMPLINGTIME_COMMON_2; if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK) { Error_Handler(); } /** Configure Regular Channel */ sConfig.Channel = ADC_CHANNEL_TEMPSENSOR; sConfig.Rank = ADC_REGULAR_RANK_3; if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN ADC_Init 2 */ /* USER CODE END ADC_Init 2 */ } /** * Enable DMA controller clock */ static void MX_DMA_Init(void) { /* DMA controller clock enable */ __HAL_RCC_DMAMUX1_CLK_ENABLE(); __HAL_RCC_DMA1_CLK_ENABLE(); /* DMA interrupt init */ /* DMA1_Channel1_IRQn interrupt configuration */ HAL_NVIC_SetPriority(DMA1_Channel1_IRQn, 0, 0); HAL_NVIC_EnableIRQ(DMA1_Channel1_IRQn); } /** * @brief GPIO Initialization Function * @param None * @retval None */ static void MX_GPIO_Init(void) { /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOB_CLK_ENABLE(); } /* USER CODE BEGIN 4 */ /******************************************************************************/ /* USER IRQ HANDLER TREATMENT */ /******************************************************************************/ /** * @brief EXTI line detection callbacks * @param GPIO_Pin: Specifies the pins connected EXTI line * @retval None */ void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin) { if (GPIO_Pin == BUTTON_SW1_PIN) { /* Set variable to report push button event to main program */ ubUserButtonClickEvent = SET; } } /** * @brief Conversion complete callback in non blocking mode * @param hadc: ADC handle * @note This example shows a simple way to report end of conversion * and get conversion result. You can add your own implementation. * @retval None */ void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef *hadc) { /* Update status variable of DMA transfer */ ubDmaTransferStatus = 1; /* Set LED depending on DMA transfer status */ /* - Turn-on if DMA transfer is completed */ /* - Turn-off if DMA transfer is not completed */ BSP_LED_On(LED2); } /** * @brief Conversion DMA half-transfer callback in non blocking mode * @note This example shows a simple way to report end of conversion * and get conversion result. You can add your own implementation. * @retval None */ void HAL_ADC_ConvHalfCpltCallback(ADC_HandleTypeDef *hadc) { /* Set LED depending on DMA transfer status */ /* - Turn-on if DMA transfer is completed */ /* - Turn-off if DMA transfer is not completed */ BSP_LED_Off(LED2); } /** * @brief ADC error callback in non blocking mode * (ADC conversion with interruption or transfer by DMA) * @param hadc: ADC handle * @retval None */ void HAL_ADC_ErrorCallback(ADC_HandleTypeDef *hadc) { /* In case of ADC error, call main error handler */ Error_Handler(); } /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ while(1) { /* Toggle LED2 */ BSP_LED_Off(LED2); HAL_Delay(800); BSP_LED_On(LED2); HAL_Delay(10); BSP_LED_Off(LED2); HAL_Delay(180); BSP_LED_On(LED2); HAL_Delay(10); } /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ Error_Handler(); /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */