/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file Examples/ADC/ADC_Oversampling/Src/main.c * @author MCD Application Team * @brief Use ADC to convert a single channel at each trig from timer. * Conversion data are transferred by DMA into a table, * indefinitely (circular mode). * Example using the STM32WLxx ADC HAL API. ****************************************************************************** * @attention * * Copyright (c) 2020 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* Definitions of environment analog values */ /* Definitions of data related to this example */ /* ADC unitary conversion timeout */ /* Considering ADC settings, duration of 1 ADC conversion should always */ /* be lower than 1ms. */ #define ADC_UNITARY_CONVERSION_TIMEOUT_MS ( 1U) /* Init variable out of ADC expected conversion data range for data */ /* on 16 bits (oversampling enabled). */ #define VAR_CONVERTED_DATA_INIT_VALUE_16BITS (0xFFFF + 1U) /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ ADC_HandleTypeDef hadc; DAC_HandleTypeDef hdac; /* USER CODE BEGIN PV */ /* Variables for ADC conversion data */ __IO uint16_t uhADCxConvertedData = VAR_CONVERTED_DATA_INIT_VALUE; /* ADC group regular conversion data */ /* Variables for ADC conversion data computation to physical values */ uint16_t uhADCxConvertedData_Voltage_mVolt = 0; /* Value of voltage calculated from ADC conversion data (unit: mV) */ /* Variable to manage push button on board: interface between ExtLine interruption and main program */ __IO uint8_t ubUserButtonClickEvent = RESET; /* Event detection: Set after User Button interrupt */ /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_DAC_Init(void); static void MX_ADC_Init(void); /* USER CODE BEGIN PFP */ /* Private function prototypes -----------------------------------------------*/ static void Generate_waveform_SW_update_Config(void); static void Generate_waveform_SW_update(void); /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_DAC_Init(); MX_ADC_Init(); /* USER CODE BEGIN 2 */ /* Initialize LED on board */ BSP_LED_Init(LED2); /* Configure User push-button (B1) in Interrupt mode */ BSP_PB_Init(BUTTON_SW1, BUTTON_MODE_EXTI); /* Run the ADC calibration in single-ended mode */ if (HAL_ADCEx_Calibration_Start(&hadc) != HAL_OK) { /* Calibration Error */ Error_Handler(); } /* Configure the DAC peripheral and generate a constant voltage of Vdda/2. */ Generate_waveform_SW_update_Config(); /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { /* Check for event on push button to perform following actions */ if ((ubUserButtonClickEvent) == SET) { /* Reset variable for next loop iteration (with debounce) */ HAL_Delay(200); ubUserButtonClickEvent = RESET; /* Modifies modifies the voltage level, to generate a waveform circular, */ /* shape of ramp: Voltage is increasing at each press on push button, */ /* from 0 to maximum range (Vdda) in 4 steps, then starting back from 0V. */ /* Voltage is updated incrementally at each call of this function. */ Generate_waveform_SW_update(); /* Note: Variable "ubUserButtonClickEvent" is set into push button */ /* IRQ handler, refer to function "HAL_GPIO_EXTI_Callback()". */ } /*## Enable peripherals ####################################################*/ /* Start ADC group regular conversion */ if (HAL_ADC_Start(&hadc) != HAL_OK) { /* ADC conversion start error */ Error_Handler(); } /* Wait till conversion is done */ if (HAL_ADC_PollForConversion(&hadc, 10) != HAL_OK) { /* End Of Conversion flag not set on time */ Error_Handler(); } else { /* Retrieve ADC conversion data */ uhADCxConvertedData = HAL_ADC_GetValue(&hadc); /* Computation of ADC conversions raw data to physical values */ /* using helper macro. */ uhADCxConvertedData_Voltage_mVolt = __ADC_CALC_DATA_VOLTAGE(VDDA_APPLI, uhADCxConvertedData)/1; /* Toggle LED2 as heart beat */ BSP_LED_Toggle(LED2); } /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ /* Note: ADC conversion data are computed to physical values */ /* into variable "uhADCxConvertedData_Voltage_mVolt" */ /* using helper macro "__ADC_CALC_DATA_VOLTAGE()". */ /* (for debug: see variable content into watch window). */ } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Configure the main internal regulator output voltage */ __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1); /** Initializes the CPU, AHB and APB buses clocks */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_MSI; RCC_OscInitStruct.MSIState = RCC_MSI_ON; RCC_OscInitStruct.MSICalibrationValue = RCC_MSICALIBRATION_DEFAULT; RCC_OscInitStruct.MSIClockRange = RCC_MSIRANGE_8; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_MSI; RCC_OscInitStruct.PLL.PLLM = RCC_PLLM_DIV4; RCC_OscInitStruct.PLL.PLLN = 24; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2; RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2; RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Configure the SYSCLKSource, HCLK, PCLK1 and PCLK2 clocks dividers */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK3|RCC_CLOCKTYPE_HCLK |RCC_CLOCKTYPE_SYSCLK|RCC_CLOCKTYPE_PCLK1 |RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; RCC_ClkInitStruct.AHBCLK3Divider = RCC_SYSCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK) { Error_Handler(); } } /** * @brief ADC Initialization Function * @param None * @retval None */ static void MX_ADC_Init(void) { /* USER CODE BEGIN ADC_Init 0 */ /* USER CODE END ADC_Init 0 */ ADC_ChannelConfTypeDef sConfig = {0}; /* USER CODE BEGIN ADC_Init 1 */ /* USER CODE END ADC_Init 1 */ /** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion) */ hadc.Instance = ADC; hadc.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4; hadc.Init.Resolution = ADC_RESOLUTION_12B; hadc.Init.DataAlign = ADC_DATAALIGN_RIGHT; hadc.Init.ScanConvMode = ADC_SCAN_DISABLE; hadc.Init.EOCSelection = ADC_EOC_SINGLE_CONV; hadc.Init.LowPowerAutoWait = DISABLE; hadc.Init.LowPowerAutoPowerOff = DISABLE; hadc.Init.ContinuousConvMode = DISABLE; hadc.Init.NbrOfConversion = 1; hadc.Init.DiscontinuousConvMode = DISABLE; hadc.Init.ExternalTrigConv = ADC_SOFTWARE_START; hadc.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE; hadc.Init.DMAContinuousRequests = DISABLE; hadc.Init.Overrun = ADC_OVR_DATA_OVERWRITTEN; hadc.Init.SamplingTimeCommon1 = ADC_SAMPLETIME_79CYCLES_5; hadc.Init.SamplingTimeCommon2 = ADC_SAMPLETIME_1CYCLE_5; hadc.Init.OversamplingMode = ENABLE; hadc.Init.Oversampling.Ratio = ADC_OVERSAMPLING_RATIO_16; hadc.Init.Oversampling.RightBitShift = ADC_RIGHTBITSHIFT_4; hadc.Init.Oversampling.TriggeredMode = ADC_TRIGGEREDMODE_SINGLE_TRIGGER; hadc.Init.TriggerFrequencyMode = ADC_TRIGGER_FREQ_HIGH; if (HAL_ADC_Init(&hadc) != HAL_OK) { Error_Handler(); } /** Configure Regular Channel */ sConfig.Channel = ADC_CHANNEL_6; sConfig.Rank = ADC_REGULAR_RANK_1; sConfig.SamplingTime = ADC_SAMPLINGTIME_COMMON_1; if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN ADC_Init 2 */ /* USER CODE END ADC_Init 2 */ } /** * @brief DAC Initialization Function * @param None * @retval None */ static void MX_DAC_Init(void) { /* USER CODE BEGIN DAC_Init 0 */ /* USER CODE END DAC_Init 0 */ DAC_ChannelConfTypeDef sConfig = {0}; /* USER CODE BEGIN DAC_Init 1 */ /* USER CODE END DAC_Init 1 */ /** DAC Initialization */ hdac.Instance = DAC; if (HAL_DAC_Init(&hdac) != HAL_OK) { Error_Handler(); } /** DAC channel OUT1 config */ sConfig.DAC_SampleAndHold = DAC_SAMPLEANDHOLD_DISABLE; sConfig.DAC_Trigger = DAC_TRIGGER_NONE; sConfig.DAC_OutputBuffer = DAC_OUTPUTBUFFER_ENABLE; sConfig.DAC_ConnectOnChipPeripheral = DAC_CHIPCONNECT_ENABLE; sConfig.DAC_UserTrimming = DAC_TRIMMING_FACTORY; if (HAL_DAC_ConfigChannel(&hdac, &sConfig, DAC_CHANNEL_1) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN DAC_Init 2 */ /* USER CODE END DAC_Init 2 */ } /** * @brief GPIO Initialization Function * @param None * @retval None */ static void MX_GPIO_Init(void) { /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOA_CLK_ENABLE(); } /* USER CODE BEGIN 4 */ /** * @brief For this example, generate a waveform voltage on a spare DAC * channel, so user has just to connect a wire between DAC channel * (pin PA10) and ADC channel (pin PA10) to run this example. * (this prevents the user from resorting to an external signal * generator). * This function configures the DAC and generates a constant voltage of Vdda/2. * @note Voltage level can be modifying afterwards using function * "Generate_waveform_SW_update()". * @param None * @retval None */ static void Generate_waveform_SW_update_Config(void) { /* Set DAC Channel data register: channel corresponding to ADC channel ADC_CHANNEL_6 */ /* Set DAC output to 1/2 of full range (4095 <=> Vdda=3.3V): 2048 <=> 1.65V */ if (HAL_DAC_SetValue(&hdac, DAC_CHANNEL_1, DAC_ALIGN_12B_R, DIGITAL_SCALE_12BITS/2) != HAL_OK) { /* Setting value Error */ Error_Handler(); } /* Enable DAC Channel: channel corresponding to ADC channel ADC_CHANNEL_6 */ if (HAL_DAC_Start(&hdac, DAC_CHANNEL_1) != HAL_OK) { /* Start Error */ Error_Handler(); } } /** * @brief For this example, generate a waveform voltage on a spare DAC * channel, so user has just to connect a wire between DAC channel * (pin PA10) and ADC channel (pin PA10) to run this example. * (this prevents the user from resorting to an external signal * generator). * This function modifies the voltage level, to generate a * waveform circular, shape of ramp: Voltage is increasing at each * press on push button, from 0 to maximum range (Vdda) in 4 steps, * then starting back from 0V. * Voltage is updated incrementally at each call of this function. * @note Preliminarily, DAC must be configured once using * function "Generate_waveform_SW_update_Config()". * @param None * @retval None */ static void Generate_waveform_SW_update(void) { static uint8_t ub_dac_steps_count = 0; /* Count number of clicks: Incremented after User Button interrupt */ /* Set DAC voltage on channel corresponding to ADC_CHANNEL_6 */ /* in function of user button clicks count. */ /* Set DAC output on 5 voltage levels, successively to: */ /* - minimum of full range (0 <=> ground 0V) */ /* - 1/4 of full range (4095 <=> Vdda=3.3V): 1023 <=> 0.825V */ /* - 1/2 of full range (4095 <=> Vdda=3.3V): 2048 <=> 1.65V */ /* - 3/4 of full range (4095 <=> Vdda=3.3V): 3071 <=> 2.475V */ /* - maximum of full range (4095 <=> Vdda=3.3V) */ if (HAL_DAC_SetValue(&hdac, DAC_CHANNEL_1, DAC_ALIGN_12B_R, ((DIGITAL_SCALE_12BITS * ub_dac_steps_count) / 4) ) != HAL_OK) { /* Start Error */ Error_Handler(); } /* Wait for voltage settling time */ HAL_Delay(1); /* Manage ub_dac_steps_count to increment it in 4 steps and circularly. */ if (ub_dac_steps_count < 4) { ub_dac_steps_count++; } else { ub_dac_steps_count = 0; } } /******************************************************************************/ /* USER IRQ HANDLER TREATMENT */ /******************************************************************************/ /** * @brief EXTI line detection callbacks * @param GPIO_Pin: Specifies the pins connected EXTI line * @retval None */ void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin) { if (GPIO_Pin == BUTTON_SW1_PIN) { /* Set variable to report push button event to main program */ ubUserButtonClickEvent = SET; } } /** * @brief ADC error callback in non blocking mode * (ADC conversion with interruption or transfer by DMA) * @param hadc: ADC handle * @retval None */ void HAL_ADC_ErrorCallback(ADC_HandleTypeDef *hadc) { /* In case of ADC error, call main error handler */ Error_Handler(); } /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ while(1) { /* Toggle LED2 */ BSP_LED_Off(LED2); HAL_Delay(800); BSP_LED_On(LED2); HAL_Delay(10); BSP_LED_Off(LED2); HAL_Delay(180); BSP_LED_On(LED2); HAL_Delay(10); } /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ Error_Handler(); /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */