/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file I2C/I2C_WakeUpFromStop2/Src/main.c * @author MCD Application Team * @brief This sample code shows how to use STM32WLxx I2C HAL API to transmit * and receive a data buffer with a communication process in stop mode 2 * based on IT transfer. * The communication is done using 2 Boards. ****************************************************************************** * @attention * * Copyright (c) 2020 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* Uncomment this line to use the board as master, if not it is used as slave */ //#define MASTER_BOARD /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ I2C_HandleTypeDef hi2c3; /* USER CODE BEGIN PV */ /* Buffer used for transmission */ uint8_t aTxBuffer[] = " ****I2C_TwoBoards communication wake up from stop mode 2 based on IT**** ****I2C_TwoBoards communication wake up from stop mode 2 based on IT**** ****I2C_TwoBoards communication wake up from stop mode 2 based on IT**** "; /* Buffer used for reception */ uint8_t aRxBuffer[RXBUFFERSIZE]; /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_I2C3_Init(void); /* USER CODE BEGIN PFP */ /* Private function prototypes -----------------------------------------------*/ static uint16_t Buffercmp(uint8_t* pBuffer1, uint8_t* pBuffer2, uint16_t BufferLength); #ifndef MASTER_BOARD static void EXTI25_Enable_IT(void); #endif /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_I2C3_Init(); /* USER CODE BEGIN 2 */ /* Configure LED2, LED1 and LED3 */ BSP_LED_Init(LED2); BSP_LED_Init(LED3); BSP_LED_Init(LED1); #ifdef MASTER_BOARD /* Configure User push-button (B1) */ BSP_PB_Init(BUTTON_SW1, BUTTON_MODE_GPIO); /* Wait for User push-button (B1) press before starting the Communication */ while (BSP_PB_GetState(BUTTON_SW1) != GPIO_PIN_RESET) { } /* Wait for User push-button (B1) release before starting the Communication */ while (BSP_PB_GetState(BUTTON_SW1) != GPIO_PIN_SET) { } /* The board sends the message and expects to receive it back */ /*##- Start the transmission process #####################################*/ /* While the I2C in reception process, user can transmit data through "aTxBuffer" buffer */ do { if(HAL_I2C_Master_Transmit_IT(&hi2c3, (uint16_t)I2C_ADDRESS, (uint8_t*)aTxBuffer, TXBUFFERSIZE)!= HAL_OK) { /* Error_Handler() function is called when error occurs. */ Error_Handler(); } /*##- Wait for the end of the transfer #################################*/ /* Before starting a new communication transfer, you need to check the current state of the peripheral; if it's busy you need to wait for the end of current transfer before starting a new one. For simplicity reasons, this example is just waiting till the end of the transfer, but application may perform other tasks while transfer operation is ongoing. */ while (HAL_I2C_GetState(&hi2c3) != HAL_I2C_STATE_READY) { } /* When Acknowledge failure occurs (Slave don't acknowledge it's address) Master restarts communication */ } while(HAL_I2C_GetError(&hi2c3) == HAL_I2C_ERROR_AF); /* Wait for User push-button (B1) press before starting the Communication */ while (BSP_PB_GetState(BUTTON_SW1) != GPIO_PIN_RESET) { } /* Wait for User push-button (B1) release before starting the Communication */ while (BSP_PB_GetState(BUTTON_SW1) != GPIO_PIN_SET) { } /*##- Put I2C peripheral in reception process ###########################*/ do { if(HAL_I2C_Master_Receive_IT(&hi2c3, (uint16_t)I2C_ADDRESS, (uint8_t *)aRxBuffer, RXBUFFERSIZE) != HAL_OK) { /* Error_Handler() function is called when error occurs. */ Error_Handler(); } /*##- Wait for the end of the transfer #################################*/ /* Before starting a new communication transfer, you need to check the current state of the peripheral; if it's busy you need to wait for the end of current transfer before starting a new one. For simplicity reasons, this example is just waiting till the end of the transfer, but application may perform other tasks while transfer operation is ongoing. */ while (HAL_I2C_GetState(&hi2c3) != HAL_I2C_STATE_READY) { } /* When Acknowledge failure occurs (Slave don't acknowledge it's address) Master restarts communication */ } while(HAL_I2C_GetError(&hi2c3) == HAL_I2C_ERROR_AF); #else /*## Unmask wakeup with Interrupt request from I2C3 #####################*/ EXTI25_Enable_IT(); /*##- Enable I2C peripheral in wake up from stop mode 2 #################*/ HAL_I2CEx_EnableWakeUp(&hi2c3); /*##- Put I2C peripheral in reception process ###########################*/ if(HAL_I2C_Slave_Receive_IT(&hi2c3, (uint8_t *)aRxBuffer, RXBUFFERSIZE) != HAL_OK) { /* Transfer error in reception process */ Error_Handler(); } /* enter stop mode 2 */ /* Turn LED1 on */ BSP_LED_On(LED1); HAL_PWREx_EnterSTOP2Mode(PWR_STOPENTRY_WFI); /* ... STOP mode 2 ... */ /* Wake Up from Stop mode 2 */ /* Turn LED1 off */ BSP_LED_Off(LED1); /*##- Wait for the end of the transfer ###################################*/ /* Before starting a new communication transfer, you need to check the current state of the peripheral; if it's busy you need to wait for the end of current transfer before starting a new one. For simplicity reasons, this example is just waiting till the end of the transfer, but application may perform other tasks while transfer operation is ongoing. */ while (HAL_I2C_GetState(&hi2c3) != HAL_I2C_STATE_READY) { } /*##- Start the transmission process #####################################*/ /* While the I2C in reception process, user can transmit data through "aTxBuffer" buffer */ if(HAL_I2C_Slave_Transmit_IT(&hi2c3, (uint8_t*)aTxBuffer, TXBUFFERSIZE)!= HAL_OK) { /* Transfer error in transmission process */ Error_Handler(); } /* enter stop mode 2 */ /* Turn LED1 on */ BSP_LED_On(LED1); HAL_PWREx_EnterSTOP2Mode(PWR_STOPENTRY_WFI); /* ... STOP mode 2 ... */ /* Wake Up from Stop mode 2 */ /* Turn LED1 off */ BSP_LED_Off(LED1); #endif /* MASTER_BOARD */ /*##- Wait for the end of the transfer ###################################*/ /* Before starting a new communication transfer, you need to check the current state of the peripheral; if it's busy you need to wait for the end of current transfer before starting a new one. For simplicity reasons, this example is just waiting till the end of the transfer, but application may perform other tasks while transfer operation is ongoing. */ while (HAL_I2C_GetState(&hi2c3) != HAL_I2C_STATE_READY) { } /*##- Compare the sent and received buffers ##############################*/ if(Buffercmp((uint8_t*)aTxBuffer,(uint8_t*)aRxBuffer,RXBUFFERSIZE)) { /* Processing Error */ Error_Handler(); } /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Configure the main internal regulator output voltage */ __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE2); /** Initializes the CPU, AHB and APB buses clocks */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Configure the SYSCLKSource, HCLK, PCLK1 and PCLK2 clocks dividers */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK3|RCC_CLOCKTYPE_HCLK |RCC_CLOCKTYPE_SYSCLK|RCC_CLOCKTYPE_PCLK1 |RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; RCC_ClkInitStruct.AHBCLK3Divider = RCC_SYSCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK) { Error_Handler(); } } /** * @brief I2C3 Initialization Function * @param None * @retval None */ static void MX_I2C3_Init(void) { /* USER CODE BEGIN I2C3_Init 0 */ /* USER CODE END I2C3_Init 0 */ /* USER CODE BEGIN I2C3_Init 1 */ /* USER CODE END I2C3_Init 1 */ hi2c3.Instance = I2C3; hi2c3.Init.Timing = 0x0020098E; hi2c3.Init.OwnAddress1 = 202; hi2c3.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT; hi2c3.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE; hi2c3.Init.OwnAddress2 = 0; hi2c3.Init.OwnAddress2Masks = I2C_OA2_NOMASK; hi2c3.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE; hi2c3.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE; if (HAL_I2C_Init(&hi2c3) != HAL_OK) { Error_Handler(); } /** Configure Analogue filter */ if (HAL_I2CEx_ConfigAnalogFilter(&hi2c3, I2C_ANALOGFILTER_ENABLE) != HAL_OK) { Error_Handler(); } /** Configure Digital filter */ if (HAL_I2CEx_ConfigDigitalFilter(&hi2c3, 0) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN I2C3_Init 2 */ /* USER CODE END I2C3_Init 2 */ } /** * @brief GPIO Initialization Function * @param None * @retval None */ static void MX_GPIO_Init(void) { /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOB_CLK_ENABLE(); } /* USER CODE BEGIN 4 */ /** * @brief Tx Transfer completed callback. * @param I2cHandle: I2C handle. * @note This example shows a simple way to report end of IT Tx transfer, and * you can add your own implementation. * @retval None */ #ifdef MASTER_BOARD void HAL_I2C_MasterTxCpltCallback(I2C_HandleTypeDef *I2cHandle) { /* Toggle LED2: Transfer in transmission process is correct */ BSP_LED_Toggle(LED2); } #else void HAL_I2C_SlaveTxCpltCallback(I2C_HandleTypeDef *I2cHandle) { /* Restore config: clock, GPIO... */ SystemClock_Config(); /* Restore GPIO configuration */ BSP_LED_Init(LED2); BSP_LED_Init(LED1); /* Wake Up from Stop Mode 2 */ /* Turn LED1 off */ BSP_LED_Off(LED1); /* Turn off LED2: Transfer in transmission process is correct */ BSP_LED_Off(LED2); } #endif /* MASTER_BOARD */ /** * @brief Rx Transfer completed callback. * @param I2cHandle: I2C handle * @note This example shows a simple way to report end of IT Rx transfer, and * you can add your own implementation. * @retval None */ #ifdef MASTER_BOARD void HAL_I2C_MasterRxCpltCallback(I2C_HandleTypeDef *I2cHandle) { /* Toggle LED2: Transfer in reception process is correct */ BSP_LED_Toggle(LED2); } #else void HAL_I2C_SlaveRxCpltCallback(I2C_HandleTypeDef *I2cHandle) { /* Restore config: clock, GPIO... */ SystemClock_Config(); /* Restore GPIO configuration */ BSP_LED_Init(LED2); BSP_LED_Init(LED1); /* Wake Up from Stop Mode 2 */ /* Turn LED1 off */ BSP_LED_Off(LED1); /* Turn On LED2: Transfer in reception process is correct */ BSP_LED_On(LED2); } #endif /* MASTER_BOARD */ /** * @brief I2C error callbacks. * @param I2cHandle: I2C handle * @note This example shows a simple way to report transfer error, and you can * add your own implementation. * @retval None */ #ifdef MASTER_BOARD void HAL_I2C_ErrorCallback(I2C_HandleTypeDef *I2cHandle) { /* Turn LED3 on: Transfer error in reception/transmission process */ BSP_LED_On(LED3); } #else void HAL_I2C_ErrorCallback(I2C_HandleTypeDef *I2cHandle) { /* Restore config: clock, GPIO... */ SystemClock_Config(); /** Error_Handler() function is called when error occurs. * 1- When Slave doesn't acknowledge its address, Master restarts communication. * 2- When Master doesn't acknowledge the last data transferred, Slave doesn't care in this example. */ if (HAL_I2C_GetError(I2cHandle) != HAL_I2C_ERROR_AF) { /* Restore GPIO configuration */ BSP_LED_Init(LED2); BSP_LED_Init(LED3); /* Turn Off LED2 */ BSP_LED_Off(LED2); /* Turn On LED3 */ BSP_LED_On(LED3); } } #endif /* MASTER_BOARD */ #ifndef MASTER_BOARD static void EXTI25_Enable_IT(void) { EXTI_HandleTypeDef hexti; EXTI_ConfigTypeDef exticonfig; exticonfig.Line = EXTI_LINE_25; exticonfig.Mode = EXTI_MODE_INTERRUPT; HAL_EXTI_SetConfigLine(&hexti,&exticonfig); } #endif /** * @brief Compares two buffers. * @param pBuffer1, pBuffer2: buffers to be compared. * @param BufferLength: buffer's length * @retval 0 : pBuffer1 identical to pBuffer2 * >0 : pBuffer1 differs from pBuffer2 */ static uint16_t Buffercmp(uint8_t* pBuffer1, uint8_t* pBuffer2, uint16_t BufferLength) { while (BufferLength--) { if ((*pBuffer1) != *pBuffer2) { return BufferLength; } pBuffer1++; pBuffer2++; } return 0; } /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ /* Turn LED3 on */ BSP_LED_On(LED3); while(1) { } /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ Error_Handler(); /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */