/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file Examples_LL/PKA/PKA_ModularExponentiation/Src/main.c * @author MCD Application Team * @brief This example describes how to use PKA peripheral to generate an * ECDSA signature using the STM32WLxx PKA LL API. * Peripheral initialization done using LL unitary services functions. ****************************************************************************** * @attention * * Copyright (c) 2020 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ /* USER CODE BEGIN PV */ __IO uint32_t endOfProcess = 0; uint8_t buffer[256] = {0}; /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_PKA_Init(void); /* USER CODE BEGIN PFP */ void LED_Init(void); void LED_On(void); void LED_Blinking(uint32_t Period); static uint32_t Buffercmp(const uint8_t* pBuffer1,const uint8_t* pBuffer2, uint32_t BufferLength); __IO uint32_t *PKA_Memcpy_u8_to_u32(__IO uint32_t dst[], const uint8_t src[], uint32_t n); uint8_t *PKA_Memcpy_u32_to_u8(uint8_t dst[], __IO const uint32_t src[], uint32_t n); void PKA_load_ciphering_parameter(void); void PKA_load_unciphering_parameter(void); /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ uint32_t result = 0; /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ /* System interrupt init*/ NVIC_SetPriorityGrouping(NVIC_PRIORITYGROUP_4); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_PKA_Init(); /* USER CODE BEGIN 2 */ /* Set mode to ECDSA signature generation in interrupt mode */ LL_PKA_SetMode(PKA, LL_PKA_MODE_MONTGOMERY_PARAM_MOD_EXP); LL_PKA_EnableIT_ADDRERR(PKA); LL_PKA_EnableIT_RAMERR(PKA); LL_PKA_EnableIT_PROCEND(PKA); /* FROM PLAINTEXT TO CIPHERTEXT */ /* Loads the input buffers to PKA RAM */ PKA_load_ciphering_parameter(); /* Launch the computation in interrupt mode */ LL_PKA_Start(PKA); /* Wait for the interrupt callback */ while(endOfProcess != 1); endOfProcess = 0; /* Retrieve the result and output buffer */ PKA_Memcpy_u32_to_u8(buffer, &PKA->RAM[PKA_MODULAR_EXP_OUT_SM_ALGO_ACC1], rsa_pub_2048_modulus_len / 4); /* Compare to expected results */ result = Buffercmp(buffer, ciphertext_bin, ciphertext_bin_len); if (result != 0) { LED_Blinking(LED_BLINK_ERROR); } /* FROM CIPHERTEXT TO PLAINTEXT */ /* Loads the input buffers to PKA RAM */ PKA_load_unciphering_parameter(); /* Launch the computation in interrupt mode */ LL_PKA_Start(PKA); /* Wait for the interrupt callback */ while(endOfProcess != 1); endOfProcess = 0; /* Retrieve the result and output buffer */ PKA_Memcpy_u32_to_u8(buffer, &PKA->RAM[PKA_MODULAR_EXP_OUT_SM_ALGO_ACC1], rsa_pub_2048_modulus_len / 4); /* Compare to expected results */ result = Buffercmp(buffer, plaintext_bin, plaintext_bin_len); if (result != 0) { LED_Blinking(LED_BLINK_ERROR); } LED_On(); /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { LL_FLASH_SetLatency(LL_FLASH_LATENCY_0); while(LL_FLASH_GetLatency() != LL_FLASH_LATENCY_0) { } LL_PWR_SetRegulVoltageScaling(LL_PWR_REGU_VOLTAGE_SCALE2); LL_RCC_HSI_Enable(); /* Wait till HSI is ready */ while(LL_RCC_HSI_IsReady() != 1) { } LL_RCC_HSI_SetCalibTrimming(64); LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_HSI); /* Wait till System clock is ready */ while(LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_HSI) { } LL_RCC_SetAHBPrescaler(LL_RCC_SYSCLK_DIV_1); LL_RCC_SetAHB3Prescaler(LL_RCC_SYSCLK_DIV_1); LL_RCC_SetAPB1Prescaler(LL_RCC_APB1_DIV_1); LL_RCC_SetAPB2Prescaler(LL_RCC_APB2_DIV_1); LL_Init1msTick(16000000); /* Update CMSIS variable (which can be updated also through SystemCoreClockUpdate function) */ LL_SetSystemCoreClock(16000000); } /** * @brief PKA Initialization Function * @param None * @retval None */ static void MX_PKA_Init(void) { /* USER CODE BEGIN PKA_Init 0 */ /* USER CODE END PKA_Init 0 */ /* Peripheral clock enable */ LL_AHB3_GRP1_EnableClock(LL_AHB3_GRP1_PERIPH_PKA); /* USER CODE BEGIN PKA_Init 1 */ /* USER CODE END PKA_Init 1 */ LL_PKA_Enable(PKA); /* USER CODE BEGIN PKA_Init 2 */ /* Configure NVIC for PKA interrupts */ /* Set priority for PKA_IRQn */ /* Enable PKA_IRQn */ NVIC_SetPriority(PKA_IRQn, 0); NVIC_EnableIRQ(PKA_IRQn); /* USER CODE END PKA_Init 2 */ } /** * @brief GPIO Initialization Function * @param None * @retval None */ static void MX_GPIO_Init(void) { LL_GPIO_InitTypeDef GPIO_InitStruct = {0}; /* GPIO Ports Clock Enable */ LL_AHB2_GRP1_EnableClock(LL_AHB2_GRP1_PERIPH_GPIOB); /**/ LL_GPIO_ResetOutputPin(LED2_GPIO_Port, LED2_Pin); /**/ GPIO_InitStruct.Pin = LED2_Pin; GPIO_InitStruct.Mode = LL_GPIO_MODE_OUTPUT; GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_LOW; GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_PUSHPULL; GPIO_InitStruct.Pull = LL_GPIO_PULL_NO; LL_GPIO_Init(LED2_GPIO_Port, &GPIO_InitStruct); } /* USER CODE BEGIN 4 */ /** * @brief Load into PKA RAM the ciphering parameters. * @param None * @retval None */ void PKA_load_ciphering_parameter(void) { /* Get the number of bit per operand */ PKA->RAM[PKA_MODULAR_EXP_IN_OP_NB_BITS] = rsa_pub_2048_modulus_len*8; /* Get the number of bit of the exponent */ PKA->RAM[PKA_MODULAR_EXP_IN_EXP_NB_BITS] = rsa_pub_2048_publicExponent_len*8; /* Move the input parameters pOp1 to PKA RAM */ PKA_Memcpy_u8_to_u32(&PKA->RAM[PKA_MODULAR_EXP_IN_EXPONENT_BASE], plaintext_bin, rsa_pub_2048_modulus_len); PKA->RAM[PKA_MODULAR_EXP_IN_EXPONENT_BASE + rsa_pub_2048_modulus_len / 4] = 0; /* Move the exponent to PKA RAM */ PKA_Memcpy_u8_to_u32(&PKA->RAM[PKA_MODULAR_EXP_IN_EXPONENT], rsa_pub_2048_publicExponent, rsa_pub_2048_publicExponent_len); PKA->RAM[PKA_MODULAR_EXP_IN_EXPONENT + rsa_pub_2048_publicExponent_len / 4] = 0; /* Move the modulus to PKA RAM */ PKA_Memcpy_u8_to_u32(&PKA->RAM[PKA_MODULAR_EXP_IN_MODULUS], rsa_pub_2048_modulus, rsa_pub_2048_modulus_len); PKA->RAM[PKA_MODULAR_EXP_IN_MODULUS + rsa_pub_2048_modulus_len / 4] = 0; } /** * @brief Load into PKA RAM the unciphering parameters. * @param None * @retval None */ void PKA_load_unciphering_parameter(void) { /* Get the number of bit per operand */ PKA->RAM[PKA_MODULAR_EXP_IN_OP_NB_BITS] = rsa_pub_2048_modulus_len*8; /* Get the number of bit of the exponent */ PKA->RAM[PKA_MODULAR_EXP_IN_EXP_NB_BITS] = rsa_priv_2048_privateExponent_len*8; /* Move the input parameters pOp1 to PKA RAM */ PKA_Memcpy_u8_to_u32(&PKA->RAM[PKA_MODULAR_EXP_IN_EXPONENT_BASE], ciphertext_bin, rsa_pub_2048_modulus_len); PKA->RAM[PKA_MODULAR_EXP_IN_EXPONENT_BASE + rsa_pub_2048_modulus_len / 4] = 0; /* Move the exponent to PKA RAM */ PKA_Memcpy_u8_to_u32(&PKA->RAM[PKA_MODULAR_EXP_IN_EXPONENT], rsa_priv_2048_privateExponent, rsa_priv_2048_privateExponent_len); PKA->RAM[PKA_MODULAR_EXP_IN_EXPONENT + rsa_priv_2048_privateExponent_len / 4] = 0; /* Move the modulus to PKA RAM */ PKA_Memcpy_u8_to_u32(&PKA->RAM[PKA_MODULAR_EXP_IN_MODULUS], rsa_priv_2048_modulus, rsa_pub_2048_modulus_len); PKA->RAM[PKA_MODULAR_EXP_IN_MODULUS + rsa_pub_2048_modulus_len / 4] = 0; } void PKA_ERROR_callback(void) { LED_Blinking(LED_BLINK_ERROR); } void PKA_PROCEND_callback(void) { endOfProcess = 1; } /** * @brief Compares two buffers. * @param pBuffer1, pBuffer2: buffers to be compared. * @param BufferLength: buffer's length * @retval 0 : pBuffer1 identical to pBuffer2 * >0 : pBuffer1 differs from pBuffer2 */ static uint32_t Buffercmp(const uint8_t* pBuffer1,const uint8_t* pBuffer2, uint32_t BufferLength) { while (BufferLength--) { if ((*pBuffer1) != *pBuffer2) { return BufferLength; } pBuffer1++; pBuffer2++; } return 0; } /** * @brief Copy uint8_t array to uint32_t array to fit PKA number representation. * @param dst Pointer to destination * @param src Pointer to source * @param n Number of u32 to be handled * @retval dst */ __IO uint32_t *PKA_Memcpy_u8_to_u32(__IO uint32_t dst[], const uint8_t src[], uint32_t n) { const uint32_t *ptrSrc = (const uint32_t *) src; if (dst != 0) { for (uint32_t index = 0; index < n / 4; index++) { dst[index] = __REV(ptrSrc[n / 4 - index - 1]); } } return dst; } /** * @brief Copy uint32_t array to uint8_t array to fit PKA number representation. * @param dst Pointer to destination * @param src Pointer to source * @param n Number of u8 to be handled (must be multiple of 4) * @retval dst */ uint8_t *PKA_Memcpy_u32_to_u8(uint8_t dst[], __IO const uint32_t src[], uint32_t n) { uint32_t *ptrDst = (uint32_t *) dst; if (dst != 0) { for (uint32_t index = 0; index < n; index++) { ptrDst[n - index - 1] = __REV(src[index]); } } return dst; } /** * @brief Turn-on LED2. * @param None * @retval None */ void LED_On(void) { /* Turn LED2 on */ LL_GPIO_SetOutputPin(LED2_GPIO_Port, LED2_Pin); } /** * @brief Set LED2 to Blinking mode for an infinite loop (toggle period based on value provided as input parameter). * @param Period : Period of time (in ms) between each toggling of LED * This parameter can be user defined values. Pre-defined values used in that example are : * @arg LED_BLINK_FAST : Fast Blinking * @arg LED_BLINK_SLOW : Slow Blinking * @arg LED_BLINK_ERROR : Error specific Blinking * @retval None */ void LED_Blinking(uint32_t Period) { /* Toggle LED2 in an infinite loop */ while (1) { LL_GPIO_TogglePin(LED2_GPIO_Port, LED2_Pin); LL_mDelay(Period); } } /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d", file, line) */ /* Infinite loop */ while (1) { } /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */