
CMSIS-RTOS Tutorial

Introduction

This tutorial is an excerpt from “The Designers Guide to the Cortex-M Processor

Family” by Trevor Martin and is reproduced with permission of Elsevier. For

more details please see the Further Reading section at the end of this tutorial.

In this tutorial we are going to look at using a small footprint RTOS running on a

Cortex-M based microcontroller. Specifically we are going to use an RTOS that

meets the ‘Cortex Microcontroller Interface Standard’ (CMSIS) RTOS

Specification. This specification defines a standard RTOS API for use with

Cortex-M based microcontrollers. The CMSIS-RTOS API provides us with all

the features we will need to develop with an RTOS, we only need to learn it once

and then can use it across a very wide range of devices. CMSIS-RTOS also

provides a standard interface for more complex frameworks (Java Virtual

Machine, UML). It is also a standard interface for anyone wanting to develop

reusable software components. If you are new to using an RTOS it takes a bit of

practice to get used to working with an RTOS but once you have made the leap

the advantages are such that you will not want to return to writing bare metal

code.

Getting Started- Installing the tools

To run the examples in this tutorial, it is first necessary to install the MDK-ARM

toolchain. First download the MDK-Core Version 5 using the embedded URL

below and run the installation file.

http://www.keil.com/mdk5/install

This installs the core toolchain which includes the IDE, compiler/linker and the

basic debugger. It does not include support for specific Cortex-M based

microcontrollers. To support a given microcontroller family we need to install a

‘Device Family Pack’. This is a collection of support files such as startup code,

flash programming algorithms and debugger support that allow you to develop

with a specific microcontroller family.

The MDK-ARM toolchain
consists of a Core Installation
(IDE, Compiler and Debugger)
plus additional software packs

added through a pack installer

http://www.keil.com/mdk5/install

2 CMSIS-RTOS Tutorial

In the exercises we are going to use an STM32F103RB so we need to install

support for this device using the ‘Pack Installer’ within the µVision IDE. When

the MDK-Core finishes installing the pack installer will start automatically,

alternatively you can start the µVision IDE and access Pack Installer from the

toolbar by pressing the icon shown below

Once the pack installer is open it will connect to cloud based pack database and

display the available device packs.

Select the Keil::STM32F1xx_DFP and press the install button. This will take a

few minutes to download and install the STM32F1xx support files.

If the pack installer has any problems accessing the remote pack you can

download it manually using the URL below

http://www.keil.com/dd2/Pack/

Pack Installer Icon

The Pack Installer.
Use this utility to
install device support
and third party

software components

Install support for the

STM32F1xx Family

http://www.keil.com/dd2/Pack/

CMSIS-RTOS Tutorial

Again select the STM32F1xx pack and save it to your hard disk. The file may be

saved as a .zip file depending on the browser you are using. If it is saved as a .zip

change the .zip extension to .pack, you can then install it locally by double

clicking on the STM32F1xx.pack file.

Installing the examples

The examples for this tutorial are provided as a CMSIS pack. You can install the

pack into the MDK-ARM by simply double clicking on the

Hitex.CMSIS_RTOS_Tutorial.1.0.3. pack file.

Once the examples have been installed into MDK-ARM they are part of the

toolchain and can be accessed through the pack installer. The tutorial examples

can be found in the boards section under ‘CMSIS_RTOS_Tutorial’.

Once the pack has started

installing click next

Here you must accept the license
and again click next to continue

the installation

4 CMSIS-RTOS Tutorial

What Hardware do I need?

Simple answer: none! The Keil toolchain contains simulators for each of the

Cortex-M processors. It also contains full simulation models (CPU + Peripherals)

for some of the earlier Cortex-M microcontrollers. This means we can run the

examples in the debugger using the simulation models and explore every aspect

of using the RTOS. In fact this method of working is a better way of learning

how to use the RTOS than going straight to a real microcontroller.

Overview

In this tutorial we will first look at setting up an introductory RTOS project for a

Cortex-M based microcontroller. Next, we will go through each of the RTOS

primitives and how they influence the design of our application code. Finally,

when we have a clear understanding of the RTOS features, we will take a closer

look at the RTOS configuration options. If you are used to programming a

microcontroller without using an RTOS i.e. bare metal, there are two key things

to understand as you work through this tutorial. In the first section we will focus

on creating and managing Threads. The key concept here is to consider them

running as parallel concurrent objects. In the second section we will look at how

to communicate between threads. In this section the key concept is

synchronization of the concurrent threads.

CMSIS-RTOS Tutorial

First steps with CMSIS-RTOS

The RTOS itself consists of a scheduler which supports round-robin, pre-emptive

and co-operative multitasking of program threads, as well as time and memory

management services. Inter-thread communication is supported by additional

RTOS objects, including signal triggering, semaphores, mutex and a mailbox

system. As we will see, interrupt handling can also be accomplished by

prioritized threads which are scheduled by the RTOS kernel.

Accessing the CMSIS-RTOS API

To access any of the CMSIS-RTOS features in our application code it is

necessary to include the following header file

#include <cmsis_os.h>

This header file is maintained by ARM as part of the CMSIS-RTOS standard.

For the CMSIS-RTOS Keil RTX this is the default API. Other RTOS will have

their own proprietary API but may provide a wrapper layer to implement the

CMSIS-RTOS API so they can be used where compatibility with the CMSIS

standard is required.

Threads

The building blocks of a typical ‘C’ program are functions which we call to

perform a specific procedure and which then return to the calling function. In

CMSIS-RTOS the basic unit of execution is a “Thread”. A Thread is very similar

to a ‘C’ procedure but has some very fundamental differences.

The RTOS kernel contains a
scheduler that runs program
code as tasks. Communication
between tasks is accomplished
by RTOS objects such as events,
semaphores, mutexes and
mailboxes. Additional RTOS
services include time and
memory management and

interrupt support.

6 CMSIS-RTOS Tutorial

unsigned int procedure (void) void thread (void)

{ {

 while(1)

 …… {

 ……

 return(ch); }

} }

While we always return from our ‘C’ function, once started an RTOS thread must

contain a loop so that it never terminates and thus runs forever. You can think of

a thread as a mini self-contained program that runs within the RTOS.

An RTOS program is made up of a number of threads, which are controlled by

the RTOS scheduler. This scheduler uses the SysTick timer to generate a periodic

interrupt as a time base. The scheduler will allot a certain amount of execution

time to each thread. So thread1 will run for 5ms then be de-scheduled to allow

thread2 to run for a similar period; thread 2 will give way to thread3 and finally

control passes back to thread1. By allocating these slices of runtime to each

thread in a round-robin fashion, we get the appearance of all three threads

running in parallel to each other.

Conceptually we can think of each thread as performing a specific functional unit

of our program with all threads running simultaneously. This leads us to a more

object-orientated design, where each functional block can be coded and tested in

isolation and then integrated into a fully running program. This not only imposes

a structure on the design of our final application but also aids debugging, as a

particular bug can be easily isolated to a specific thread. It also aids code reuse

in later projects. When a thread is created, it is also allocated its own thread ID.

This is a variable which acts as a handle for each thread and is used when we

want to manage the activity of the thread.

osThreadId id1,id2,id3;

In order to make the thread-switching process happen, we have the code

overhead of the RTOS and we have to dedicate a CPU hardware timer to provide

the RTOS time reference. In addition, each time we switch running threads, we

have to save the state of all the thread variables to a thread stack. Also, all the

runtime information about a thread is stored in a thread control block, which is

managed by the RTOS kernel. Thus the “context switch time”, that is, the time to

save the current thread state and load up and start the next thread, is a crucial

figure and will depend on both the RTOS kernel and the design of the underlying

hardware.

Each thread has its own stack for saving
its data during a context switch. The
thread control block is used by the kernel

to manage the active thread.

Thread

Thread Control

Block

Thread

Stack

Priority & State Context

CMSIS-RTOS Tutorial

The Thread Control Block contains information about the status of a thread. Part

of this information is its run state. In a given system only one thread can be

running and all the others will be suspended but ready to run. The RTOS has

various methods of inter-thread communication (signals, semaphores, messages).

Here, a thread may be suspended to wait to be signaled by another thread or

interrupt before it resumes its ready state, whereupon it can be placed into

running state by the RTOS scheduler.

Running The Currently Running Thread

Ready Threads ready to Run

Wait Blocked Threads waiting for an OS Event

Starting the RTOS

To build a simple RTOS program we declare each thread as a standard ‘C’

function and also declare a thread ID variable for each function.

void thread1 (void);

void thread2 (void);

osThreadId thrdID1, thrdID2;

By default the CMSIS-RTOS scheduler will be running when main() is entered

and the main() function becomes the first active thread. Once in main(), we can

stop the scheduler task switching by calling osKernelInitialize (). While the

RTOS is halted we can create further threads and other RTOS objects. Once the

system is in a defined state we can restart the RTOS scheduler with

osKernelStart().

You can run any initializing code you want before starting the RTOS.

void main (void)

{

 osKernelInitialize ();

 IODIR1 = 0x00FF0000; // Do any C code you want

 Init_Thread(); //Create a Thread

 osKernelStart(); //Start the RTOS

}

At any given moment a
single thread may be
running. The remaining
threads will be ready to
run and will be
scheduled by the
kernel. Threads may
also be waiting
pending an OS event.
When this occurs they
will return to the ready
state and be scheduled

by the kernel.

8 CMSIS-RTOS Tutorial

When threads are created they are also assigned a priority. If there are a number

of threads ready to run and they all have the same priority, they will be allotted

run time in a round-robin fashion. However, if a thread with a higher priority

becomes ready to run, the RTOS scheduler will de-schedule the currently running

thread and start the high priority thread running. This is called pre-emptive

priority-based scheduling. When assigning priorities you have to be careful

because the high priority thread will continue to run until it enters a waiting state

or until a thread of equal or higher priority is ready to run.

Exercise a first CMSIS-RTOS project

This project will take you through the steps necessary to create and debug a

CMSIS-RTOS based project.

Start µVision and select Project  New µVision Project

In the new project dialog enter a suitable project name and directory and

click Save

Next the device database will open. Navigate through to the

STMicroelectronics::STM32F103:STM32F103RB

Threads of equal priority will be
scheduled in a round-robin fashion.
High priority tasks will pre-empt low
priority tasks and enter the running

state ‘on demand’.

CMSIS-RTOS Tutorial

Once you have selected this device click ok.

Once the microcontroller variant has been selected the Run Time Environment

Manager will open.

This allows you to configure the platform of software components you are going

to use in a given project. As well as displaying the available components the RTE

understands their dependencies on other components.

To configure the project for use with the CMSIS-RTOS Keil RTX, simply

tick the CMSIS::RTOS (API):Keil RTX box.

10 CMSIS-RTOS Tutorial

This will cause the selection box to turn orange meaning that additional

components are required. The required component will be displayed in the

Validation Output window.

 To add the missing components you can press the Resolve button in the bottom

left hand corner of the RTE. This will add the device startup code and the CMSIS

Core support. When all the necessary components are present the selection

column will turn green.

It is also possible to access a components help files by clicking on the blue

hyperlink in the Description column.

 Now press the OK button and all the selected components will be added to

the new project

CMSIS-RTOS Tutorial

The CMSIS components are added to folders displayed as a green diamond.

There are two types of file here. The first type is a library file which is held

within the toolchain and is not editable. This file is shown with a yellow key to

show that it is ‘locked’ (read-only). The second type of file is a configuration file.

These files are copied to your project directory and can be edited as necessary.

Each of these files can be displayed as a text files but it is also possible to view

the configuration options as a set of pick lists and drop down menus.

To see this open the RTX_Conf_CM.c file and at the bottom of the editor

window select the ‘Configuration Wizard’ tab.

12 CMSIS-RTOS Tutorial

Click on Expand All to see all of the configuration options as a graphical

pick list:

For now it is not necessary to make any changes here and these options will be

examined towards the end of this tutorial.

Our project contains four configuration files three of which are standard CMSIS

files

Startup_STM32F10x_md.s Assembler vector table

System_STM32F10x.c C code to initialize key system

peripherals, such as clock tree, PLL

external memory interface.

RTE_Device.h Configures the pin multiplex

RTX_Conf_CM.c Configures Keil RTX

Now that we have the basic platform for our project in place we can add some

user source code which will start the RTOS and create a running thread.

To do this right-click the ‘Source Group 1’ folder and select ‘Add new item

to Source Group 1’

CMSIS-RTOS Tutorial

In the Add new Item dialog select the ’User code template’ Icon and in the

CMSIS section select the ‘CMSIS-RTOS ‘main’ function’ and click Add

Repeat this but this time select ‘CMSIS-RTOS Thread’.

This will now add two source files to our project main.c and thread.c

Open thread.c in the editor

We will look at the RTOS definitions in this project in the next section. For now

this file contains two functions Init_Thread() which is used to start the thread

running and the actual thread function.

14 CMSIS-RTOS Tutorial

Copy the Init_Thread function prototype and then open main.c

Main contains the functions to initialize and start the RTOS kernel. Then unlike a

bare metal project main is allowed to terminate rather than enter an endless loop.

However this is not really recommended and we will look at a more elegant way

of terminating a thread later.

In main.c add the Init_Thread prototype as an external declaration and then

call it after the osKernelInitialize function as shown below.

#define osObjectsPublic

#include "osObjects.h"

extern int Init_Thread (void); //Add this line

int main (void) {

 osKernelInitialize ();

Init_Thread (); //Add this line

 osKernelStart ();

}

Build the project (F7)

In this tutorial we can use the debugger simulator to run the code without the

need for any external hardware.

Highlight the Target 1 root folder, right click and select options for target 1

Select the debugger tab

This menu is in two halves the left side configures the simulator the right half

configures the hardware debugger

Select the Simulator radio button and check that ‘Dialog DLL’ is set to

DARMSTM.DLL with parameter -pSTM32F103RB

CMSIS-RTOS Tutorial

Click ok to close the options for target menu

Start the debugger (Ctrl+F5)

This will run the code up to main

Open the Debug  OS Support  System and Thread Viewer

This debug view shows all the running threads and their current state. At the

moment we have three threads which are main, os_idle_demon and

osTimerThread.

Start the code running (F5)

16 CMSIS-RTOS Tutorial

Now the user thread is created and main is terminated.

Exit the debugger

While this project does not actually do anything it demonstrates the few

steps necessary to start using CMSIS-RTOS

Creating Threads

Once the RTOS is running, there are a number of system calls that are used to

manage and control the active threads. By default, the main() function is

automatically created as the first thread running. In the first example we used it

to create an additional thread then let it terminate by running through the closing

brace. However, if we want to we can continue to use main as a thread in its own

right. If we want to control main as a thread we must get its thread ID. The first

RTOS function we must therefore call is osThreadGetId() which returns the

thread ID number of the currently running thread. This is then stored in its ID

handle. When we want to refer to this thread in future OS calls, we use this

handle rather than the function name of the thread.

osThreadId main_id; //create the thread handle

void main (void)

{

/* Read the Thread-ID of the main thread */

 main_id = osThreadGetId ();

 while(1)

 {

 ………

 }

}

Now that we have an ID handle for main we could create the application threads

and then call osTerminate(main_id) to end the main thread. This is the best way

to end a thread rather than let it run off the end of the closing brace. Alternatively

CMSIS-RTOS Tutorial

we can add a while(1) loop as shown above and continue to use main in our

application.

As we saw in the first example the main thread is used as a launcher thread to

create the application threads. This is done in two stages. First a thread structure

is defined; this allows us to define the thread operating parameters.

osThreadId thread1_id; //thread handle

void thread1 (void const *argument); //function prototype for thread1

osThreadDef(thread1, osPriorityNormal, 1, 0); //thread definition structure

The thread structure requires us to define the name of the thread function, its

thread priority, the number of instances of the thread that will be created, and its

stack size. We will look at these parameters in more detail later. Once the thread

structure has been defined the thread can be created using the osThreadCreate()

API call. Then the thread is created from within the application code, this is often

the within the main thread but can be at any point in the code.

 thread1_id = osThreadCreate(osThread(thread1), NULL);

This creates the thread and starts it running. It is also possible to pass a parameter

to the thread when it starts.

uint32_t startupParameter = 0x23;

thread1_id = osThreadCreate(osThread(thread1), startupParameter);

When each thread is created, it is also assigned its own stack for storing data

during the context switch. This should not be confused with the native Cortex

processor stack; it is really a block of memory that is allocated to the thread. A

default stack size is defined in the RTOS configuration file (we will see this later)

and this amount of memory will be allocated to each thread unless we override it

to allocate a custom size. The default stack size will be assigned to a thread if the

stack size value in the thread definition structure is set to zero. If necessary a

thread can be given additional memory resources by defining a bigger stack size

in the thread structure.

osThreadDef(thread1, osPriorityNormal, 1, 0); //assign default stack size to this thread

osThreadDef(thread2, osPriorityNormal, 1, 1024); //assign 1KB of stack to this thread

18 CMSIS-RTOS Tutorial

However, if you allocate a larger stack size to a thread then the additional

memory must be allocated in the RTOS configuration file; again we will see this

later.

Exercise creating and managing threads

In this project we will create and manage some additional threads. Each of the

threads created will toggle a GPIO pin on GPIO port B to simulate flashing an

LED. We can then view this activity in the simulator.

To access the exercise projects open the pack installer from within µVision.

Select the boards tab and select the CMSIS-RTOS_Tutorial

Now select the examples tab and all the example projects for this tutorial

will be shown.

To display then in order click on the grey ‘Example’ column header

A reference copy of the first exercise is included as Exercise 1

Select “Ex 2 and 3 Threads” and press the copy button.

This will install the project to a directory of your choice and open the project in

µVision.

CMSIS-RTOS Tutorial

Open the Run Time Environment Manager

In the board support section the MCBSTM32E:LED box is ticked. This adds

support functions to control the state of a bank of LED’s on the Microcontroller’s

GPIO port B.

When the RTOS starts main() runs as a thread and in addition we will create two

additional threads. First we create handles for each of the threads and then define

the parameters of each thread. These include the priority the thread will run at,

the number of instances of each thread we will create and its stack size (the

amount of memory allocated to it) zero indicates it will have the default stack

size.

osThreadId main_ID,led_ID1,led_ID2;

osThreadDef(led_thread2, osPriorityNormal, 1, 0);

osThreadDef(led_thread1, osPriorityNormal, 1, 0);

Then in the main() function the two threads are created

led_ID2 = osThreadCreate(osThread(led_thread2), NULL);

led_ID1 = osThreadCreate(osThread(led_thread1), NULL);

When the thread is created we can pass it a parameter in place of the NULL

define.

Build the project and start the debugger

Start the code running and open the Debug  OS Support  System and

Thread Viewer

20 CMSIS-RTOS Tutorial

Now we have four active threads with one running and the others ready.

Open the Debug  OS Support  Event Viewer

The event viewer shows the execution of each thread as a trace against time. This

allows you to visualize the activity of each thread and get a feel for amount of

CPU time consumed by each thread.

Now open the Peripherals  General Purpose IO  GPIOB window

Our two led threads are each toggling a GPIO port pin. Leave the code running

and watch the pins toggle for a few seconds.

If you do not see the debug windows updating check the view\periodic window

update option is ticked.

CMSIS-RTOS Tutorial

void led_thread2 (void const *argument) {

 for (;;) {

 LED_On(1);

 delay(500);

 LED_Off(1);

 delay(500);

}}

Each thread calls functions to switch an LED on and off and uses a delay

function between each on and off. Several important things are happening here.

First the delay function can be safely called by each thread. Each thread keeps

local variables in its stack so they cannot be corrupted by any other thread.

Secondly none of the threads enter a descheduled waiting state, this means that

each one runs for its full allocated time slice before switching to the next thread.

As this is a simple thread most of its execution time will be spent in the delay

loop effectively wasting cycles. Finally there is no synchronization between the

threads. They are running as separate ‘programs’ on the CPU and as we can see

from the GPIO debug window the toggled pins appear random.

Thread Management and Priority

When a thread is created it is assigned a priority level. The RTOS scheduler uses

a thread’s priority to decide which thread should be scheduled to run. If a number

of threads are ready to run, the thread with the highest priority will be placed in

the run state. If a high priority thread becomes ready to run it will preempt a

running thread of lower priority. Importantly a high priority thread running on

the CPU will not stop running unless it blocks on an RTOS API call or is

preempted by a higher priority thread. A thread’s priority is defined in the thread

structure and the following priority definitions are available. The default priority

is osPriorityNormal

22 CMSIS-RTOS Tutorial

CMSIS-RTOS Priority Levels

osPriorityIdle

osPriorityLow

osPriorityBelowNormal

osPriorityNormal

osPriorityAboveNormal

osPriorityHigh

osPriorityRealTime

osPriorityError

Once the threads are running, there are a small number of OS system calls which

are used to manage the running threads. It is also then possible to elevate or

lower a thread’s priority either from another function or from within its own

code.

osStatus osThreadSetPriority(threadID, priority);

 osPriority osThreadGetPriority(threadID);

As well as creating threads, it is also possible for a thread to delete itself or

another active thread from the RTOS. Again we use the thread ID rather than the

function name of the thread.

osStatus = osThreadTerminate (threadID1);

Finally, there is a special case of thread switching where the running thread

passes control to the next ready thread of the same priority. This is used to

implement a third form of scheduling called co-operative thread switching.

osStatus osThreadYield();//switch to next ready to run thread

Exercise creating and managing threads II

CMSIS-RTOS Tutorial

In this exercise we will look at assigning different priorities to threads and also

how to create and terminate threads dynamically.

Go back to the project “Ex 2 and 3 Threads” Change the priority of LED

Thread 2 to Above Normal

osThreadDef(led_thread2, osPriorityAboveNormal, 1, 0);

osThreadDef(led_thread1, osPriorityNormal, 1, 0);

Build the project and start the debugger

Start the code running

Open the Debug  OS Support  Event Viewer window

Here we can see thread2 running but no sign of thread1. Looking at the coverage

monitor for the two threads shows us that led_thread1 has not run.

24 CMSIS-RTOS Tutorial

Led_thread1 is running at normal priority and led_thread2 is running at a higher

priority so has pre-empted led_thread1. To make it even worse led_thread2 never

blocks so it will run forever preventing the lower priority thread from ever

running.

Although this error may seem obvious in this example this kind of mistake is

very common when designers first start to use an RTOS.

Multiple Instances

One of the interesting possibilities of an RTOS is that you can create multiple

running instances of the same base thread code. So for example you could write a

thread to control a UART and then create two running instances of the same

thread code. Here each instance of the UART code could manage a different

UART.

First we create the thread structure and set the number of thread instances to two;

osThreadDef(thread1, osPriorityNormal, 2, 0);

Then we can create two instances of the thread assigned to different thread

handles. A parameter is also passed to allow each instance to identify which

UART it is responsible for.

ThreadID_1_0 = osThreadCreate(osThread(thread1), UART1);

ThreadID_1_1 = osThreadCreate(osThread(thread1), UART2);

Exercise Multiple thread instances

In this project we will look at creating one thread and then create multiple

runtime instances of the same thread.

In the Pack Installer select “Ex 4 Multiple Instances” and copy it to your

tutorial directory.

This project performs the same function as the previous LED flasher program.

However we now have one led switcher function that uses an argument passed as

a parameter to decide which LED to flash.

void ledSwitcher (void const *argument) {

CMSIS-RTOS Tutorial

 for (;;) {

 LED_On((uint32_t)argument);

 delay(500);

 LED_Off((uint32_t)argument);

 delay(500);

 }

}

When we define the thread we adjust the instances parameter to two.

osThreadDef(ledSwitcher, osPriorityNormal, 2, 0);

Then in the main thread we create two threads which are different instances of

the same base code. We pass a different parameter which corresponds to the led

that will be toggled by the instance of the thread.

led_ID1 = osThreadCreate(osThread(ledSwitcher),(void *) 1UL);

led_ID2 = osThreadCreate(osThread(ledSwitcher),(void *) 2UL);

Build the code and start the debugger

Start the code running and open the RTX tasks and system window

Here we can see both instances of the ledSwitcher task each with a different ID.

Examine the Call stack + locals window

26 CMSIS-RTOS Tutorial

Here we can see both instances of the ledSwitcher threads and the state of their

variables. A different argument has been passed to each instance of the thread.

Time Management

As well as running your application code as threads, the RTOS also provides

some timing services which can be accessed through RTOS system calls.

Time Delay

The most basic of these timing services is a simple timer delay function. This is

an easy way of providing timing delays within your application. Although the

RTOS kernel size is quoted as 5k bytes, features such as delay loops and simple

scheduling loops are often part of a non-RTOS application and would consume

code bytes anyway, so the overhead of the RTOS can be less than it immediately

appears.

void osDelay (uint32_t millisec)

This call will place the calling thread into the WAIT_DELAY state for the

specified number of milliseconds. The scheduler will pass execution to the next

thread in the READY state.

When the timer expires, the thread will leave the wait_delay state and move to

the READY state. The thread will resume running when the scheduler moves it

to the RUNNING state. If the thread then continues executing without any

further blocking OS calls, it will be descheduled at the end of its time slice and

be placed in the ready state, assuming another thread of the same priority is ready

to run.

During their lifetime threads move
through many states. Here a running
thread is blocked by an osDelay call
so it enters a wait state. When the
delay expires, it moves to ready. The
scheduler will place it in the run
state. If its timeslice expires, it will

move back to ready.

CMSIS-RTOS Tutorial

Waiting for an Event

In addition to a pure time delay it is possible to make a thread halt and enter the

waiting state until the thread is triggered by another RTOS event. RTOS events

can be a signal, message or mail event. The osWait() API call also has a timeout

period defined in millisec that allows the thread to wake up and continue

execution if no event occurs.

osStatus osWait (uint32_t millisec)

When the interval expires, the thread moves from the wait to the READY state

and will be placed into the running state by the scheduler. osWait is an optional

api call within the CMSIS RTOS specification. If you intend to use this function

you must first check it is supported by the RTOS you are using. The osWait API

call is not supported by the Keil RTX RTOS.

Exercise Time Management

In this exercise we will look at using the basic time delay function

 In the Pack Installer select “Ex 5 Time Management” and copy it to your

tutorial directory.

This is our original led flasher program but the simple delay function has been

replaced by the osDelay API call. LED2 is toggled every 100mS and LED1 is

toggled every 500mS

void ledOn (void const *argument) {

 for (;;) {

 LED_On(1);

 osDelay(500);

 LED_Off(1);

osDelay(500);

}}

28 CMSIS-RTOS Tutorial

Build the project and start the debugger

Start the code running and open the event viewer window

Now we can see that the activity of the code is very different. When each of the

LED tasks reaches the osDelay API call it ‘blocks’ and moves to a waiting state.

The main task will be in a ready state so the scheduler will start it running. When

the delay period has timed out the led tasks will move to the ready state and will

be placed into the running state by the scheduler. This gives us a multi threaded

program where CPU runtime is efficiently shared between tasks.

Virtual Timers

The CMSIS-RTOS API can be used to define any number of virtual timers which

act as count down timers. When they expire, they will run a user call-back

function to perform a specific action. Each timer can be configured as a one shot

or repeat timer. A virtual timer is created by first defining a timer structure.

osTimerDef(timer0,led_function);

This defines a name for the timer and the name of the call back function. The

timer must then be instantiated in an RTOS thread.

osTimerId timer0_handle = osTimerCreate (timer(timer0), osTimerPeriodic, (void *)0);

This creates the timer and defines it as a periodic timer or a single shot timer

(osTimerOnce). The final parameter passes an argument to the call back function

when the timer expires.

osTimerStart (timer0_handle,0x100);

CMSIS-RTOS Tutorial

The timer can then be started at any point in a thread the timer start function

invokes the timer by its handle and defines a count period in milliseconds.

Exercise Virtual timer

In this exercise we will configure a number of virtual timers to trigger a callback

function at various frequencies

In the Pack Installer select “Ex 6 Virtual Timers” and copy it to your

tutorial directory.

This is our original led flasher program and code has been added to create four

virtual timers to trigger a callback function. Depending on which timer has

expired, this function will toggle an additional LED.

The timers are defined at the start of the code

osTimerDef(timer0_handle, callback);

osTimerDef(timer1_handle, callback);

osTimerDef(timer2_handle, callback);

osTimerDef(timer3_handle, callback);

They are then initialized in the main function

osTimerId timer0 = osTimerCreate(osTimer(timer0_handle), osTimerPeriodic, (void *)0);

osTimerId timer1 = osTimerCreate(osTimer(timer1_handle), osTimerPeriodic, (void *)1);

osTimerId timer2 = osTimerCreate(osTimer(timer2_handle), osTimerPeriodic, (void *)2);

osTimerId timer3 = osTimerCreate(osTimer(timer3_handle), osTimerPeriodic, (void *)3);

Each timer has a different handle and ID and passed a different parameter to the

common callback function

void callback(void const *param){

switch((uint32_t) param){

case 0:

GPIOB->ODR ^= 0x8;

30 CMSIS-RTOS Tutorial

break;

case 1:

GPIOB->ODR ^= 0x4;

break;

case 2:

GPIOB->ODR ^= 0x2;

break;

case 3:

break;

}

When triggered, the callback function uses the passed parameter as an index to

toggle the desired LED.

In addition to the configuring the virtual timers in the source code, the timer

thread must be enabled in the RTX configuration file.

Open the RTX_Conf_CM.c file and press the configuration wizard tab

In the system configuration section make sure the User Timers box is ticked. If

this thread is not created the timers will not work.

Build the project and start the debugger

Run the code and observe the activity of the GPIOB pins in the peripheral

window

CMSIS-RTOS Tutorial

There will also be an additional thread running in the System and Thread Viewer

window

The osDelay() function provides a relative delay from the point at which the

delay is started. The virtual timers provide an absolute delay which allows you to

schedule code to run at fixed intervals.

Sub millisecond delays

While the various CMSIS-RTOS time functions have a resolution of 1msec, it is

possible to create delays with a resolution in micro seconds using the raw

SysTick count. This form of delay does not deschedule the task, it simply halts its

execution for the desired period. To create a delay we can first get the SysTick

count.

int32_t tick,delayPeriod;

tick = osKernelSysTick(); // get start value of the Kernel system tick

Then we can scale a period in microseconds to a SysTick count value

delayPeriod = osKernelTickMicroSec(100));

This then allows us to create a delay for the the required period.

do { // Delay for 100 microseconds

32 CMSIS-RTOS Tutorial

} while ((osKernelSysTick() - tick) < delayPeriod);

Idle Demon

The final timer service provided by the RTOS isn’t really a timer, but this is

probably the best place to discuss it. If during our RTOS program we have no

thread running and no thread ready to run (e.g. they are all waiting on delay

functions) then the RTOS will use the spare runtime to call an “Idle Demon” that

is again located in the RTX_Conf_CM.c file. This idle code is in effect a low

priority thread within the RTOS which only runs when nothing else is ready.

void os_idle_demon (void)

 {

 for (;;) {

 /* HERE: include here optional user code to be executed when no thread runs. */

 }

 } /* end of os_idle_demon */

You can add any code to this thread, but it has to obey the same rules as user

threads. The simplest use of the idle demon is to place the microcontroller into a

low-power mode when it is not doing anything.

void os_idle_demon (void) {

__wfe();

}}

What happens next depends on the power mode selected in the microcontroller.

At a minimum the CPU will halt until an interrupt is generated by the SysTick

timer and execution of the scheduler will resume. If there is a thread ready to run

then execution of the application code will resume. Otherwise, the idle demon

will be reentered and the system will go back to sleep.

Exercise Idle Thread

 In the Pack Installer select “Ex 7 Idle” and copy it to your tutorial

directory.

CMSIS-RTOS Tutorial

This is a copy of the virtual timer project. Open the RTX_Conf_CM.c file and

click the text editor tab

Locate the os_idle_demon thread

void os_idle_demon (void) {

int32_t i;

for (;;) {

//wfe();

}}

Build the code and start the debugger

Run the code and observe the activity of the threads in the event Viewer.

This is a simple program which spend most of its time in the idle demon so this

code will be run almost continuously

You can also see the activity of the idle demon in the event viewer. In a real

project, the amount of time spent in the idle demon is an indication of spare CPU

cycles.

Open the View  Analysis Windows  Performance Analyzer.

34 CMSIS-RTOS Tutorial

This window shows the cumulative run time for each function in the project. In

this simple project the os_idle_demon is using most of the runtime because there

is very little application code.

Exit the debugger

Remove the delay loop and the toggle instruction and add a __wfe()

instruction in the for loop, so the code now looks like this.

void os_idle_demon (void) {

for (;;) {

__wfe();

}}

Rebuild the code, restart the debugger

Now when we enter the idle thread the __wfe() (wait for interrupt) instruction

will halt the CPU until there is a peripheral or SysTick interrupt.

Performance analysis during hardware debugging

CMSIS-RTOS Tutorial

The code coverage and performance analysis tools are available when you are

debugging on real hardware rather than simulation. However, to use these

features you need two things: First, you need a microcontroller that has been

fitted with the optional Embedded Trace Macrocell (ETM). Second, you need to

use Keil ULINKpro debug adapter which supports instruction trace via the ETM.

Inter-Thread Communication

So far we have seen how application code can be defined as independent threads

and how we can access the timing services provided by the RTOS. In a real

application we need to be able to communicate between threads in order to make

an application useful. To this end, a typical RTOS supports several different

communication objects which can be used to link the threads together to form a

meaningful program. The CMSIS-RTOS API supports inter-thread

communication with signals, semaphores, mutexes, mailboxes and message

queues. In the first section the key concept was concurrency. In this section the

key concept is synchronizing the activity of multiple threads.

Signals

CMSIS-RTOS Keil RTX supports up to sixteen signal flags for each thread.

These signals are stored in the thread control block. It is possible to halt the

execution of a thread until a particular signal flag or group of signal flags are set

by another thread in the system.

The signal wait system calls will suspend execution of the thread and place it into

the wait_evnt state. Execution of the thread will not start until all the flags set in

the signal wait API call have been set. It is also possible to define a periodic

timeout after which the waiting thread will move back to the ready state, so that it

Each thread has 16 signal flags. A
thread may be placed into a waiting
state until a pattern of flags is set by
another thread. When this happens, it
will return to the ready state and wait

to be scheduled by the kernel.

36 CMSIS-RTOS Tutorial

can resume execution when selected by the scheduler. A value of 0xFFFF defines

an infinite timeout period.

osEvent osSignalWait (int32_t signals,uint32_t millisec);

If the signals variable is set to zero when osSignalWait is called then setting any

flag will cause the thread to resume execution. You can see which flag was set by

reading the osEvent.value.signals return value.

Any thread can set or clear a signal on any other thread.

int32_t osSignalSet (osThreadId thread_id, int32_t signals);

int32_t osSignalClear (osThreadId thread_id, int32_t signals);

Exercise Signals

In this exercise we will look at using signals to trigger activity between two

threads. Whilst this is a simple program it introduces the concept of

synchronizing the activity of threads together.

 In the Pack Installer select “Ex 8 Signals” and copy it to your tutorial

directory.

This is a modified version of the led flasher program one of the threads calls the

same led function and uses osDelay() to pause the task. In addition it sets a signal

flag to wake up the second led task.

void led_Thread2 (void const *argument) {

 for (;;) {

 LED_On(2);

osSignalSet (T_led_ID1,0x01);

 osDelay(500);

CMSIS-RTOS Tutorial

LED_Off(2);

osSignalSet (T_led_ID1,0x01);

osDelay(500);}}

The second led function waits for the signal flags to be set before calling the led

functions.

void led_Thread1 (void const *argument) {

for (;;) {

osSignalWait (0x01,osWaitForever);

LED_On(1);

osSignalWait (0x01,osWaitForever);

LED_Off(1);

}}

 Build the project and start the debugger

Open the GPIOB peripheral window and start the code running

Now the port pins will appear to be switching on and off together. Synchronizing

the threads gives the illusion that both threads are running in parallel.

This is a simple exercise but it illustrates the key concept of synchronizing

activity between threads in an RTOS based application.

RTOS Interrupt Handling

The use of signal flags is a simple and efficient method of triggering actions

between threads running within the RTOS. Signal flags are also an important

method of triggering RTOS threads from interrupt sources within the Cortex-M

microcontroller. While it is possible to run C code in an interrupt service routine

(ISR), this is not desirable within an RTOS if the interrupt code is going to run

for more than a short period of time. This delays the timer tick and disrupts the

RTOS kernel. The SysTick timer runs at the lowest priority within the NVIC so

there is no overhead in reaching the interrupt routine.

38 CMSIS-RTOS Tutorial

With an RTOS application it is best to design the interrupt service code as a

thread within the RTOS and assign it a high priority. The first line of code in the

interrupt thread should make it wait for a signal flag. When an interrupt occurs,

the ISR simply sets the signal flag and terminates. This schedules the interrupt

thread which services the interrupt and then goes back to waiting for the next

signal flag to be set.

Main

ISR level 0

ISR level 1

ISR level 2

ISR level 0

ISR level 1

Round Robin Threads
priority normal

ISR 0 Thread priority above normal

ISR 1 Thread priority High

A traditional nested interrupt scheme supports prioritised interrupt

handling, but has unpredictable stack requirements.

Within the RTOS, interrupt code is run as threads. The interrupt handlers signal
the threads when an interrupt occurs. The thread priority level defines which

thread gets scheduled by the kernel.

CMSIS-RTOS Tutorial

A typical interrupt thread will have the following structure:

void Thread3 (void)

{

while(1)

{

osSignalWait (isrSignal,waitForever); // Wait for the ISR to trigger an event

….. // Handle the interrupt

} // Loop round and go back sleep

}

The actual interrupt source will contain a minimal amount of code.

 void IRQ_Handler (void)

{

osSignalSet (tsk3,isrSignal); // Signal Thread 3 with an event

}

Exercise Interrupt signal exercise

CMSIS-RTOS does not introduce any latency in serving interrupts generated by

user peripherals. However operation of the RTOS may be disturbed if you lock

out the SysTick interrupt for a long period of time. This exercise demonstrates a

technique of signaling a thread from an interrupt and servicing the peripheral

interrupt with a thread rather than a standard Interrupt service routine

 In the Pack Installer select “Ex 9 Interrupt Signals” and copy it to your

tutorial directory.

In the main function we initialize the ADC and create an ADC thread which has

a higher priority than all the other threads

osThreadDef(adc_Thread, osPriorityAboveNormal, 1, 0);

int main (void) {

LED_Init ();

init_ADC ();

40 CMSIS-RTOS Tutorial

T_led_ID1 = osThreadCreate(osThread(led_Thread1), NULL);

T_led_ID2 = osThreadCreate(osThread(led_Thread2), NULL);

T_adc_ID = osThreadCreate(osThread(adc_Thread), NULL);

However, there is a problem when we enter main: the RTOS may be configured

to run the threads in unprivileged mode so we cannot access the NVIC registers

without causing a fault exception. There are several ways round this. The

simplest is to give the threads privileged access by changing the setting in the

RTX_Conf_CM.c

Here, we have switched the thread execution mode to privileged which gives the

threads full access to the Cortex-M processor. As we have added a thread, we

also need to increase the number of concurrent running threads.

Build the code and start the debugger

Set breakpoints in led_Thread2, ADC_Thread and ADC1_2_IRQHandler

And in adc_Thread()

And in ADC1_2_Handler

CMSIS-RTOS Tutorial

Run the code

You should hit the first breakpoint which starts the ADC conversion, then run the

code again and you should enter the ADC interrupt handler. The handler sets the

adc_thread signal and quits. Setting the signal will cause the adc thread to

preempt any other running task, run the ADC service code and then block

waiting for the next signal.

Exercise Keil RTX and SVC exceptions

As we saw in the last example, when we are in a thread, it will be running in

unprivileged mode. The simple solution is to allow threads to run in privileged

mode but this allows the threads full access to the Cortex M processor potentially

allowing runtime errors. In this exercise we will look at using the system call

exception to enter privileged mode to run ‘system level’ code.

In the Pack Installer select “Ex 10 Interrupt Signals” and copy it to your

tutorial directory.

In the project we have added a new file called SVC_Table.s. This file is available

as a ‘User Code Template’ (CMSIS-RTOS User SVC) from the ‘Add New Item’

dialog:

This is the look up table for the SVC interrupts

; Import user SVC functions here.

 IMPORT __SVC_1

42 CMSIS-RTOS Tutorial

 EXPORT SVC_Table

SVC_Table

; Insert user SVC functions here. SVC 0 used by RTX Kernel.

 DCD __SVC_1 ; user SVC function

In this file we need to add import name and table entry for each __SVC function

we are going to use. In our example we only need __SVC_1

Now we can convert the ADC init function to a service call exception

void __svc(1) init_ADC (void);

void __SVC_1 (void){

Build the project and start the debugger

Step the code (F11) to the call to the init_ADC function and examine the

operating mode in the register window.

Here we are in Thread mode, unprivileged and using the process stack

Now step into the function (F11) and step through the assembler until you

reach the init_ADC C function

Now we are running in Handler mode with privileged access and are using the

main stack pointer.

CMSIS-RTOS Tutorial

This allows us the setup the ADC and also access the NVIC.

Semaphores

Like signals, semaphores are a method of synchronizing activity between two or

more threads. Put simply, a semaphore is a container that holds a number of

tokens. As a thread executes, it will reach an RTOS call to acquire a semaphore

token. If the semaphore contains one or more tokens, the thread will continue

executing and the number of tokens in the semaphore will be decremented by

one. If there are currently no tokens in the semaphore, the thread will be placed

in a waiting state until a token becomes available. At any point in its execution, a

thread may add a token to the semaphore causing its token count to increment by

one.

The diagram above illustrates the use of a semaphore to synchronize two threads.

First, the semaphore must be created and initialized with an initial token count. In

this case the semaphore is initialized with a single token. Both threads will run

and reach a point in their code where they will attempt to acquire a token from

the semaphore. The first thread to reach this point will acquire the token from the

semaphore and continue execution. The second thread will also attempt to

acquire a token, but as the semaphore is empty it will halt execution and be

placed into a waiting state until a semaphore token is available.

Meanwhile, the executing thread can release a token back to the semaphore.

When this happens, the waiting thread will acquire the token and leave the

waiting state for the ready state. Once in the ready state the scheduler will place

the thread into the run state so that thread execution can continue. While

semaphores have a simple set of OS calls they can be one of the more difficult

OS objects to fully understand. In this section we will first look at how to add

Semaphores help to control access to
program resources. Before a thread can
access a resource, it must acquire a token.
If none is available, it waits. When it is
finished with the resource, it must return

the token.

44 CMSIS-RTOS Tutorial

semaphores to an RTOS program and then go on to look at the most useful

semaphore applications.

To use a semaphore in the CMSIS-RTOS you must first declare a semaphore

container:

osSemaphoreId sem1;

osSemaphoreDef(sem1);

Then within a thread the semaphore container can be initialised with a number of

tokens.

sem1 = osSemaphoreCreate(osSemaphore(sem1), SIX_TOKENS);

It is important to understand that semaphore tokens may also be created and

destroyed as threads run. So for example you can initialise a semaphore with zero

tokens and then use one thread to create tokens into the semaphore while another

thread removes them. This allows you to design threads as producer and

consumer threads.

Once the semaphore is initialized, tokens may be acquired and sent to the

semaphore in a similar fashion to event flags. The os_sem_wait call is used to

block a thread until a semaphore token is available, like the os_evnt_wait call. A

timeout period may also be specified with 0xFFFF being an infinite wait.

osStatus osSemaphoreWait(osSemaphoreId semaphore_id, uint32_t millisec);

Once the thread has finished using the semaphore resource, it can send a token to

the semaphore container.

osStatus osSemaphoreRelease(osSemaphoreId semaphore_id);

Exercise Semaphore Signalling

In this exercise we will look at the configuration of a semaphore and use it to

signal between two tasks.

 In the Pack Installer select “Ex 11 Interrupt Signals” and copy it to your

tutorial directory.

CMSIS-RTOS Tutorial

First, the code creates a semaphore called sem1 and initialises it with zero tokens.

osSemaphoreId sem1;

osSemaphoreDef(sem1);

int main (void) {

sem1 = osSemaphoreCreate(osSemaphore(sem1), 0);

The first task waits for a token to be sent to the semaphore.

void led_Thread1 (void const *argument) {

 for (;;) {

 osSemaphoreWait(sem1, osWaitForever);

 LED_On(1);

 osDelay(500);

 LED_Off(1);

 }

}

While the second task periodically sends a token to the semaphore.

void led_Thread2 (void const *argument) {

 for (;;) {

 LED_On(2);

 osSemaphoreRelease(sem1);

 osDelay(500);

 LED_Off(2);

 osDelay(500);

 }}

Build the project and start the debugger

Set a breakpoint in the led_Thread2 task

Run the code and observe the state of the threads when the breakpoint is

reached.

46 CMSIS-RTOS Tutorial

Now led_thread1 is blocked waiting to acquire a token from the semaphore.

led_Thread1 has been created with a higher priority than led_thread2 so as soon

as a token is placed in the semaphore it will move to the ready state and pre-empt

the lower priority task and start running. When it reaches the osSemaphoreWait()

call it will again block.

Now block step the code (F10) and observe the action of the threads and the

semaphore.

Using Semaphores

Although semaphores have a simple set of OS calls, they have a wide range of

synchronizing applications. This makes them perhaps the most challenging

RTOS object to understand. In this section we will look at the most common uses

of semaphores. These are taken from “The Little Book Of Semaphores” by Allen

B. Downey. This book may be freely downloaded from the URL given in the

bibliography at the end of this book.

Signaling

Synchronizing the execution of two threads is the simplest use of a semaphore:

osSemaphoreId sem1;

osSemaphoreDef(sem1);

void thread1 (void)

{

sem1 = osSemaphoreCreate(osSemaphore(sem1), 0);

while(1)

{

FuncA();

osSemaphoreRelease(sem1)

}

}

void task2 (void)

{

while(1)

{

osSemaphoreWait(sem1,osWaitForever)

FuncB();

CMSIS-RTOS Tutorial

}

}

In this case the semaphore is used to ensure that the code in FuncA() is executed

before the code in FuncB().

Multiplex

A multiplex is used to limit the number of threads that can access a critical

section of code. For example, this could be a routine that accesses memory

resources and can only support a limited number of calls.

osSemaphoreId multiplex;

osSemaphoreDef(multiplex);

void thread1 (void)

{

multiplex =osSemaphoreCreate(osSemaphore(multiplex), FIVE_TOKENS);

while(1) {

osSemaphoreWait(multiplex,osWaitForever)

ProcessBuffer();

osSemaphoreRelease(multiplex);

}}

In this example we initialise the multiplex semaphore with 5 tokens. Before a

thread can call the ProcessBuffer() function, it must acquire a semaphore token.

Once the function has completed, the token is sent back to the semaphore. If

more than five threads are attempting to call ProcessBuffer(), the sixth must wait

until a thread has finished with ProcessBuffer() and returns its token. Thus the

multiplex semaphore ensures that a maximum of five threads can call the

ProcessBuffer() function “simultaneously”.

48 CMSIS-RTOS Tutorial

Exercise Multiplex

In this exercise we will look at using a semaphore to control access to a function

by creating a multiplex.

 In the Pack Installer select “Ex 12 Multiplex” and copy it to your tutorial

directory.

The project creates a semaphore called semMultiplex which contains one token.

Next, six instances of a thread containing a semaphore multiplex are created.

Build the code and start the debugger

Open the Peripherals  General Purpose IO  GPIOB window

Run the code and observe how the tasks set the port pins

As the code runs only one thread at a time can access the LED functions so only

one port pin is set.

Exit the debugger and increase the number of tokens allocated to the

semaphore when it is created

semMultiplex = osSemaphoreCreate(osSemaphore(semMultiplex), 3);

Build the code and start the debugger

Run the code and observe the GPIOB pins

Now three threads can access the led functions ‘concurrently’.

Rendezvous

A more generalised form of semaphore signalling is a rendezvous. A rendezvous

ensures that two threads reach a certain point of execution. Neither may continue

until both have reached the rendezvous point.

osSemaphoreId arrived1,arrived2;

osSemaphoreDef(arrived1);

CMSIS-RTOS Tutorial

osSemaphoreDef(arrived2);

void thread1 (void){

Arrived1 =osSemaphoreCreate(osSemaphore(arrived1),ZERO_TOKENS);

Arrived2 =osSemaphoreCreate(osSemaphore(arrived2),ZERO_TOKENS);

while(1){

FuncA1();

osSemaphoreRelease(Arrived1);

osSemaphoreWait(Arrived2,osWaitForever);

FuncA2();

}}

void thread2 (void) {

while(1){

FuncB1();

Os_sem_send(Arrived2);

os_sem_wait(Arrived1,osWaitForever);

FuncB2();

}}

In the above case the two semaphores will ensure that both threads will

rendezvous and then proceed to execute FuncA2() and FuncB2().

Exercise Rendezvous

In this project we will create two tasks and make sure that they have reached a

semaphore rendezvous before running the LED functions.

 In the Pack Installer select “Ex 13 Rendezvous” and copy it to your tutorial

directory.

Build the project and start the debugger.

Open the Peripherals\General Purpose IO\GPIOB window.

Run the code

Initially the semaphore code in each of the LED tasks is commented out. Since

the threads are not synchronised the GPIO pins will toggle randomly.

Exit the debugger

Un-comment the semaphore code in the LED tasks.

50 CMSIS-RTOS Tutorial

Built the project and start the debugger.

Run the code and observe the activity of the pins in the GPIOB window.

Now the tasks are synchronised by the semaphore and run the LED functions

‘concurrently’.

Barrier Turnstile

Although a rendezvous is very useful for synchronising the execution of code, it

only works for two functions. A barrier is a more generalised form of rendezvous

which works to synchronise multiple threads.

osSemaphoreId count,barrier;

osSemaphoreDef(counter);

osSemaphoreDef(barrier);

unsigned int count;

void thread1 (void)

{

count = osSemaphoreCreate(osSemaphore(count),ONE_TOKEN);

barrier = osSemaphoreCreate(osSemaphore(barrier),ZERO_TOKENS);

while(1)

{

//Allow only one task at a time to run this code

osSemaphoreWait(counter);

count = count+1;

if count == 5 os_sem_send(barrier, osWaitForever);

osSemaphoreRelease(counter);

//when all five tasks have arrived the barrier is opened

os_sem_wait(barrier, osWaitForever);

os_sem_send(barrier);

critical_Function();

}}

In this code we use a global variable to count the number of threads which have

arrived at the barrier. As each function arrives at the barrier it will wait until it

can acquire a token from the counter semaphore. Once acquired, the count

variable will be incremented by one. Once we have incremented the count

CMSIS-RTOS Tutorial

variable, a token is sent to the counter semaphore so that other waiting threads

can proceed. Next, the barrier code reads the count variable. If this is equal to the

number of threads which are waiting to arrive at the barrier, we send a token to

the barrier semaphore.

In the example above we are synchronising five threads. The first four threads

will increment the count variable and then wait at the barrier semaphore. The

fifth and last thread to arrive will increment the count variable and send a token

to the barrier semaphore. This will allow it to immediately acquire a barrier

semaphore token and continue execution. After passing through the barrier it

immediately sends another token to the barrier semaphore. This allows one of the

other waiting threads to resume execution. This thread places another token in

the barrier semaphore which triggers another waiting thread and so on. This final

section of the barrier code is called a turnstile because it allows one thread at a

time to pass the barrier. In our model of concurrent execution this means that

each thread waits at the barrier until the last arrives then the all resume

simultaneously. In the following exercise we create five instances of one thread

containing barrier code. However the barrier could be used to synchronise five

unique threads.

Exercise Semaphore Barrier

In this exercise we will use semaphores to create a barrier to synchronise

multiple tasks.

In the Pack Installer select "Ex 14 Barrier" and copy it to your tutorial

directory.

Build the project and start the debugger.

Open the Peripherals\General Purpose IO\GPIOB window.k

Run the code.

Initially, the semaphore code in each of the threads is commented out. Since the

threads are not synchronised the GPIO pins will toggle randomly like in the

rendezvous example.

Exit the debugger.

52 CMSIS-RTOS Tutorial

Remove the comments on lines 34, 45, 53 and 64 to enable the barrier code.

Built the project and start the debugger.

Run the code and observe the activity of the pins in the GPIOB window.

Now the tasks are synchronised by the semaphore and run the LED functions

‘concurrently’.

Semaphore Caveats

Semaphores are an extremely useful feature of any RTOS. However semaphores

can be misused. You must always remember that the number of tokens in a

semaphore is not fixed. During the runtime of a program semaphore tokens may

be created and destroyed. Sometimes this is useful, but if your code depends on

having a fixed number of tokens available to a semaphore you must be very

careful to always return tokens back to it. You should also rule out the possibility

of accidently creating additional new tokens.

Mutex

Mutex stands for “Mutual Exclusion”. In reality, a mutex is a specialized version

of semaphore. Like a semaphore, a mutex is a container for tokens. The

difference is that a mutex can only contain one token which cannot be created or

destroyed. The principle use of a mutex is to control access to a chip resource

such as a peripheral. For this reason a mutex token is binary and bounded. Apart

from this it really works in the same way as a semaphore. First of all we must

declare the mutex container and initialize the mutex:

osMutexId uart_mutex;

osMutexDef (uart_mutex);

Once declared the mutex must be created in a thread.

uart_mutex = osMutexCreate(osMutex(uart_mutex));

Then any thread needing to access the peripheral must first acquire the mutex

token:

osMutexWait(osMutexId mutex_id,uint32_t millisec;

CMSIS-RTOS Tutorial

Finally, when we are finished with the peripheral the mutex must be released:

osMutexRelease(osMutexId mutex_id);

Mutex use is much more rigid than semaphore use, but is a much safer

mechanism when controlling absolute access to underlying chip registers.

Exercise Mutex

In this exercise our program writes streams of characters to the microcontroller

UART from different threads. We will declare and use a mutex to guarantee that

each thread has exclusive access to the UART until it has finished writing its

block of characters.

In the Pack Installer select "Ex 15 Mutex" and copy it to your tutorial

directory.

This project declares two threads which both write blocks of characters to the

UART. Initially, the mutex is commented out.

void uart_Thread1 (void const *argument) {

uint32_t i;

 for (;;) {

//osMutexWait(uart_mutex, osWaitForever);

for(i=0;i<10;i++) SendChar('1');

SendChar('\n');

SendChar('\r');

//osMutexRelease(uart_mutex);

 }}

In each thread the code prints out the thread number. At the end of each block of

characters it then prints the carriage return and new line characters.

Build the code and start the debugger.

54 CMSIS-RTOS Tutorial

Open the UART1 console window with View\Serial Windows\UART #1

Start the code running and observe the output in the console window.

Here we can see that the output data stream is corrupted by each thread writing to

the UART without any accessing control.

Exit the debugger.

Uncomment the mutex calls in each thread.

Build the code and start the debugger.

Observe the output of each task in the console window.

CMSIS-RTOS Tutorial

Now the mutex guarantees each task exclusive access to the UART while it

writes each block of characters.

Mutex Caveats

Clearly you must take care to return the mutex token when you are finished with

the chip resource, or you will have effectively prevented any other thread from

accessing it. You must also be extremely careful about using the

osThreadTerminate() call on functions which control a mutex token. Keil RTX

is designed to be a small footprint RTOS so that it can run on even the very small

Cortex-M microcontrollers. Consequently there is no thread deletion safety. This

means that if you delete a thread which is controlling a mutex token, you will

destroy the mutex token and prevent any further access to the guarded peripheral.

Data Exchange

So far all of the inter-thread communication methods have only been used to

trigger execution of threads; they do not support the exchange of program data

between threads. Clearly, in a real program we will need to move data between

threads. This could be done by reading and writing to globally declared variables.

In anything but a very simple program, trying to guarantee data integrity would

be extremely difficult and prone to unforeseen errors. The exchange of data

between threads needs a more formal asynchronous method of communication.

56 CMSIS-RTOS Tutorial

CMSIS-RTOS provides two methods of data transfer between threads. The first

method is a message queue which creates a buffered data ‘pipe’ between two

threads. The message queue is designed to transfer integer values.

The second form of data transfer is a mail queue. This is very similar to a

message queue except that it transfers blocks of data rather than a single integer.

Message and mail queues both provide a method for transferring data between

threads. This allows you to view your design as a collection of objects (threads)

interconnected by data flows. The data flow is implemented by message and mail

queues. This provides both a buffered transfer of data and a well defined

communication interface between threads. Starting with a system level design

based on threads connected by mail and message queues allows you to code

different subsystems of your project, especially useful if you are working in a

Thread1 Thread2

Message queue

Integer or pointer values

Thread1 Thread2

Message queue

pointers to memory blocks

Mailslots – formatted memory blocks

alloc free

CMSIS-RTOS Tutorial

team. Also as each thread has well defined inputs and outputs it is easy to isolate

for testing and code reuse.

Message Queue

To setup a message queue we first need to allocate the memory resources.

osMessageQId Q_LED;

osMessageQDef (Q_LED,16_Message_Slots,unsigned int);

This defines a message queue with sixteen storage elements. In this particular

queue each element is defined as an unsigned int. Whilst we can post data

directly into the message queue, it is also possible to post a pointer to a data

object.

osEvent result;

We also need to define an osEvent variable which will be used to retrieve the

queue data. The osEvent variable is a union that allows you to retrieve data from

the message queue in a number of formats.

union{

uint32_t v

void *p

int32_t signals

The system level view of an RTOS
based project consists of thread
objects connected by data flows
in the form of message and mail
queues.

58 CMSIS-RTOS Tutorial

}value

The osEvent union allows you to read the data posted to the message queue as an

unsigned int or a void pointer. Once the memory resources are created we can

declare the message queue in a thread.

Q_LED = osMessageCreate(osMessageQ(Q_LED),NULL);

Once the message queue has been created we can put data into the queue from

one thread.

osMessagePut(Q_LED,0x0,osWaitForever);

and then read if from the queue in another.

result = osMessageGet(Q_LED,osWaitForever);

LED_data = result.value.v;

Exercise message queue

In this exercise we will look at defining a message queue between two threads

and then use it to send process data.

 In the Pack Installer select “Ex 16 Message Queue” and copy it to your

tutorial directory.

Open Main.c and view the message queue initialization code.

osMessageQId Q_LED;

osMessageQDef (Q_LED,0x16,unsigned char);

osEvent result;

int main (void) {

LED_Init ();

Q_LED = osMessageCreate(osMessageQ(Q_LED),NULL);

We define and create the message queue in the main thread along with the event

structure.

osMessagePut(Q_LED,0x1,osWaitForever);

CMSIS-RTOS Tutorial

osDelay(100);

Then in one of the threads we can post data and receive it in the second.

result = osMessageGet(Q_LED,osWaitForever);

LED_On(result.value.v);

Build the project and start the debugger.

Set a breakpoint in led_thread1.

Now run the code and observe the data as it arrives.

Memory pool

While it is possible to post simple data values into the message queue it is also

possible to post a pointer to a more complex object. CMSIS-RTOS supports the

dynamic allocation of memory in the form of a memory pool. Here we can

declare a structure which combines a number of data elements.

typedef struct {

 uint8_t LED0;

 uint8_t LED1;

 uint8_t LED2;

uint8_t LED3;

} memory_block_t;

Then we can create a pool of these objects as blocks of memory.

osPoolDef(led_pool,ten_blocks,memory_block_t);

osPoolId(led_pool);

Then we can create the memory pool by declaring it in a thread.

60 CMSIS-RTOS Tutorial

led_pool = osPoolCreate(osPool(led_pool));

Now we can allocate a memory pool within a thread.

memory_block_t *led_data;

*led_data = (memory_block_t *) osPoolAlloc(led_pool);

and then populate it with data;

led_data->LED0 = 0;

led_data->LED1 = 1;

led_data->LED2 = 2;

led_data->LED3 = 3;

It is then possible to place the pointer to the memory block in a message queue.

osMessagePut(Q_LED,(uint32_t)led_data,osWaitForever);

so the data can be accessed by another task.

osEvent event; memory_block_t * received;

event = osMessageGet(Q_LED,osWatiForever);

*received = (memory_block *)event.value.p;

 led_on(received->LED0);

Once the data in the memory block has been used the block must be released

back to the memory pool for reuse.

osPoolFree(led_pool,received);

Exercise Memorypool

This exercise demonstrates the configuration of a memorypool and message

queue to transfer complex data between threads.

In the Pack Installer select “Ex 17 MemoryPool” and copy it to your tutorial

directory.

CMSIS-RTOS Tutorial

This exercise creates a memory pool and a message queue. A producer thread

acquires a buffer from the memory pool and fills it with data. A pointer to the

memory pool buffer is then placed in the message queue. A second thread reads

the pointer from the message queue and then accesses the data stored in the

memory pool buffer before freeing the buffer back to the memory pool. This

allows large amounts of data to be moved from one thread to another in a safe

synchronized way. This is called a ‘zero copy’ memory queue as only the pointer

is moved through the message queue, the actual data does not move memory

locations.

At the beginning of main.c the memory pool and message queue are defined.

typedef struct {

uint8_t canData[8];

} message_t;

osPoolDef(mpool, 16, message_t);

osPoolId mpool;

osMessageQDef(queue, 16, message_t);

osMessageQId queue;

In the producer thread acquire a message buffer, fill it with data and post a

testData++;

message = (message_t*)osPoolAlloc(mpool);

for(index =0;index<8;index++){

 message->canData[index] = testData+index;}

osMessagePut(queue, (uint32_t)message, osWaitForever);

Then in the consumer thread we can read the message queue using the

event.value.p pointer object and then access the memory pool buffer. Once we

have used the data in the buffer it can be released back to the memory pool.

for(index=0;index<8;index++){

message_t *message = (message_t*)evt.value.p;

LED_On((uint32_t)message->canData[index]);}

62 CMSIS-RTOS Tutorial

osPoolFree(mpool, message);

Build the code and start the debugger.

Place breakpoints on the osMessagePut and osmessageGet functions.

Run the code and observe the data being transferred between the threads.

 Mail Queue

While memory pools can be used as data buffers within a thread, CMSIS-RTOS

also implements a mail queue which is a combination of memory pool and

message queue. The Mail queue uses a memory pool to create formatted memory

blocks and passes pointers to these blocks in a message queue. This allows the

data to stay in an allocated memory block while we only move a pointer between

the different threads. A simple mail queue API makes this easy to setup and use.

First we need to declare a structure for the mail slot similar to the one we used

for the memory pool.

typedef struct {

 uint8_t LED0;

 uint8_t LED1;

 uint8_t LED2;

 uint8_t LED3;

} mail_format;

This message structure is the format of the memory block that is allocated

in the mail queue. Now we can create the mail queue and define the

number of memory block ‘slots’ in the mail queue.

CMSIS-RTOS Tutorial

osMailQDef(mail_box, sixteen_mail_slots, mail_format);

osMailQId mail_box;

Once the memory requirements have been allocated we can create the mail queue

in a thread.

mail_box = osMailCreate(osMailQ(mail_box), NULL);

Once the mail queue has been instantiated we can post a message. This is

different from the message queue in that we must first allocate a mail slot and

populate it with data.

mail_format *LEDtx;

LEDtx = (mail_format*)osMailAlloc(mail_box, osWaitForever);

First declare a pointer in the mail slot format and then allocate this to a mail slot.

This locks the mail slot and prevents it being allocated to any other thread. If all

of the mail slots are in use the thread will block and wait for a mail slot to

become free. You can define a timeout in milliseconds which will allow the task

to continue if a mail slot has not become free.

Once a mail slot has been allocated it can be populated with data and then posted

to the mail queue.

 LEDtx->LED0 = led0[index];

 LEDtx->LED1 = led1[index];

 LEDtx->LED2 = led2[index];

 LEDtx->LED3 = led3[index];

osMailPut(mail_box, LEDtx);

The receiving thread must declare a pointer in the mail slot format and an

osEvent structure.

osEvent evt;

mail_format *LEDrx;

Then in the thread loop we can wait for a mail message to arrive.

64 CMSIS-RTOS Tutorial

 evt = osMailGet(mail_box, osWaitForever);

We can then check the event structure to see if it is indeed a mail message and

extract the data.

if (evt.status == osEventMail) {

 LEDrx = (mail_format*)evt.value.p;

Once the data in the mail message has been used the mail slot must be

released so it can be reused.

osMailFree(mail_box, LEDrx);

Exercise Mailbox

This exercise demonstrates configuration a mailbox and using it to post messages

between tasks.

 In the Pack Installer select “Ex 17 Mailbox” and copy it to your tutorial

directory.

The project creates a 16 slot mailbox to send LED data between threads.

typedef struct {
 uint8_t LED0;
 uint8_t LED1;
 uint8_t LED2;
 uint8_t LED3;
} mail_format;

osMailQDef(mail_box, 16, mail_format);
osMailQId mail_box;

int main (void) {

 LED_Init();

 mail_box = osMailCreate(osMailQ(mail_box), NULL);

A producer task then allocates a mail slot fills it with data and posts it to the mail

queue.

LEDtx = (mail_format*)osMailAlloc(mail_box, osWaitForever);

 LEDtx->LED0 = led0[index];

CMSIS-RTOS Tutorial

LEDtx->LED1 = led1[index];

LEDtx->LED2 = led2[index];

LEDtx->LED3 = led3[index];

osMailPut(mail_box, LEDtx);

The receiving task waits for a mail message to arrive then reads the data. Once

the data has been used the mail slot is released.

evt = osMailGet(mail_box, osWaitForever);

if(evt.status == osEventMail){

LEDrx = (mail_format*)evt.value.p;

LED_Out((LEDrx->LED0|LEDrx->LED1|LEDrx->LED2|LEDrx->LED3)<<8);

osMailFree(mail_box, LEDrx);

}

Build the code and start the debugger

Set a breakpoint in the consumer and producer threads and run the code.

Observe the mailbox messages arriving at the consumer thread.

Configuration

So far we have looked at the CMSIS-RTOS API. This includes thread

management functions, time management and inter-thread communication. Now

that we have a clear idea of exactly what the RTOS kernel is capable of, we can

take a more detailed look at the configuration file. There is one configuration file

for all of the Cortex-M based microcontrollers.

66 CMSIS-RTOS Tutorial

Like the other configuration files, the RTX_Conf_CM.c file is a template file

which presents all the necessary configurations as a set of menu options.

Thread Definition

In the thread definition section we define the basic resources which will be

required by the CMSIS-RTOS threads. For each thread we allocate a defined

stack space (in the above example this is 200 bytes.) We also define the

maximum number of concurrently running threads. Thus, the amount of RAM

required for the above example can easily be computed as 200 x 6 or 1200 bytes.

If some of our threads need a larger stack space, then a larger stack can be

allocated when the task is created. In addition the total custom stack size must be

allocated in the configuration file along with the total number of threads with

custom stack size. Again, the RAM requirement is easily calculated.

CMSIS-RTOS Tutorial

Kernel Debug support

During development, CMSIS-RTOS can trap stack overflows. When this option

is enabled, an overflow of a thread stack space will cause the RTOS kernel to call

the os_error function which is located in the RTX_Conf_CM.c file. This function

gets an error code and then sits in an infinite loop. The stack checking option is

intended for use during debugging and should be disabled on the final application

to minimize the kernel overhead. However, it is possible to modify the os_error()

function if enhanced error protection is required in the final release.

#define OS_ERROR_STACK_OVF 1

#define OS_ERROR_FIFO_OVF 2

#define OS_ERROR_MBX_OVF 3

extern osThreadId svcThreadGetId (void);

void os_error (uint32_t error_code) {

 switch (error_code) {

 case OS_ERROR_STACK_OVF:

 /* Stack overflow detected for the currently running task. */

 /* Thread can be identified by calling svcThreadGetId(). */

 break;

 case OS_ERROR_FIFO_OVF:

 /* ISR FIFO Queue buffer overflow detected. */

 break;

 case OS_ERROR_MBX_OVF:

 /* Mailbox overflow detected. */

 break;

 }

 for (;;);

}

68 CMSIS-RTOS Tutorial

It is also possible to monitor the maximum stack memory usage during run time.

If you check the ‘Stack Usage Watermark’ option, a pattern (0xCC) is written

into each stack space. During runtime this watermark is used to calculate the

maximum memory usage. This figure is reported in the threads section of the

‘System and Event Viewer’ window.

The final option in the thread definition section allows you to define the number

of user timers. It is a common mistake to leave this set at zero. If you do not set

this value to match the number of virtual timers in use by your application, the

os_timer() API calls will fail to work. The thread definition section also allows us

to select whether the threads are running in privileged or unprivileged mode.

System Timer Configuration

 The default timer for use with CMSIS-RTOS is the Cortex-M SysTick timer

which is present on nearly all Cortex-M processors. The input to the SysTick

timer will generally be the CPU clock. It is possible to use a different timer by

unchecking the ‘Use SysTick’ option. If you do this there are two function stubs

in the RTX_Conf_CM.c file that allow you to initialize the alternative timer and

acknowledge its interrupt.

int os_tick_init (void) {

 return (-1); /* Return IRQ number of timer (0..239) */

}

void os_tick_irqack (void) {

 /* ... */

}

Whichever timer you use you must next setup its input clock value. Next we

must define our timer tick rate. This is the rate at which timer interrupts are

generated. On each timer tick the RTOS kernel will run the scheduler to

determine if it is necessary to perform a context switch and replace the running

CMSIS-RTOS Tutorial

thread. The timer tick value will depend on your application, but the default

starting value is set to 1msec.

Timeslice configuration

The final configuration setting allows you to enable round robin scheduling and

define the timeslice period. This is a multiple of the timer tick rate so in the

above example each thread will run for five ticks or 5msec before it will pass

execution to another thread of the same priority that is ready to run. If no thread

of the same priority is ready to run, it will continue execution. The system

configuration options also allow you to enable and configure the virtual timer

thread. If you are going to use the virtual timers this option must be configured or

the timers will not work. Then lastly if you are going to trigger a thread from an

interrupt routine using event flags then it is possible to define a FIFO queue for

triggered signals. This buffers signal triggers in the event of bursts of interrupt

activity.

Scheduling Options

CMSIS-RTOS allows you to build an application with three different kernel

scheduling options. These are round robin scheduling, pre-emptive scheduling

and co-operative multi-tasking. A summary of these options are as follows:

Pre-emptive scheduling

If the round robin option is disabled in the RTX_Config_CM.c file, each thread

must be declared with a different priority. When the RTOS is started and the

threads are created, the thread with the highest priority will run.

In a pre-emptive RTOS each thread
has a different priority level and will
run until it is pre-empted or has

reached a blocking OS call.

70 CMSIS-RTOS Tutorial

This thread will run until it blocks, i.e. it is forced to wait for an event flag,

semaphore or other object. When it blocks, the next ready thread with the highest

priority will be scheduled and will run until it blocks, or a higher priority thread

becomes ready to run. So with pre-emptive scheduling we build a hierarchy of

thread execution, with each thread consuming variable amounts of run time.

Round-Robin Scheduling

A round-robin based scheduling scheme can be created by enabling the round-

robin option in the RTX_Conf_CM.c file and declaring each thread with the

same priority.

In this scheme, each thread will be allotted a fixed amount of run time before

execution is passed to the next ready thread. If a thread blocks before its

timeslice has expired, execution will be passed to the next ready thread.

Round-Robin Pre-emptive Scheduling

As discussed at the beginning of this tutorial, the default scheduling option for

the Keil RTX is round-robin pre-emptive. For most applications this is the most

useful option and you should use this scheduling scheme unless there is a strong

reason to do otherwise.

Co-operative Multitasking

A final scheduling option is co-operative multitasking. In this scheme, round-

robin scheduling is disabled and each thread has the same priority. This means

that the first thread to run will run forever unless it blocks. Then execution will

pass to the next ready thread.

In a round robin RTOS
threads will run for a fixed
period or timeslice or until
they reach a blocking OS

call.

CMSIS-RTOS Tutorial

Threads can block on any of the standard OS objects, but there is also an

additional OS call, os_task_pass, that schedules a thread to the ready state and

passes execution to the next ready thread.

RTX Source Code

CMSIS-RTOS Keil RTX is included with all versions of the MDK-ARM

toolchain. The source code can be found in the following directory of the

toolchain.

C:\Keil\ARM\Pack\ARM\CMSIS\<version>\CMSIS\RTOS\RTX

If you want to perform source level debugging of the RTOS code create a text

file containing the following command line where the path is the RTX source

directory.

SET SRC = <path>

Now add this file to the initialization box in the debugger menu.

In a co-operative RTOS each thread
will run until it reaches a blocking
OS call or uses the osThreadYield()

call.

72 CMSIS-RTOS Tutorial

Now when you start the debug session the RTX source will be loaded.

RTX License

CMSIS-RTOS Keil RTX is provided under a three clause BSD license and may

be used freely without cost for commercial and non commercial projects. RTX

will also compile using the IAR and GCC tools. For more information use the

URL below.

https://www.keil.com/demo/eval/rtx.htm

Hardware Debug

During this tutorial we have used the simulator within the µVision debugger. To

debug real hardware you need to select the hardware interface you are using and

select the radio button to enable hardware debug.

If your hardware debugger supports the CoreSight Instrumentation Trace

Macrocell (ITM), you will be able to get the same debug information in the

‘System and Thread Viewer’ and ‘Event Viewer’. However, to make these

windows active you must enable and configure the ITM. In the debug dialog

press the settings button next to the hardware debug interface.

https://www.keil.com/demo/eval/rtx.htm

CMSIS-RTOS Tutorial

In this menu you must set the Core clock to the CPU frequency of your

microcontroller.

Next tick the trace enable box.

Finally enable port 31 of the ITM stimulus ports

This will now receive the additional debug information sent by the RTX kernel.

74 CMSIS-RTOS Tutorial

Further Reading

This tutorial is an excerpt from the Designers Guide to the Cortex-M Processor

family by Trevor Martin.

Table of contents

Introduction to the Cortex-M Processor Family

Developing Software for the Cortex-M Processors

Cortex-M Architecture

Cortex Microcontroller Software Interface Standard

Advanced Architecture Features

Developing with CMSIS-RTOS

Practical DSP for the Cortex-M4

Debugging with CoreSight

For More details please see the Elsevier Store

Print book ISBN 978-0080982960

http://store.elsevier.com/product.jsp?isbn=9780080982960&pagename=search

E Book ISBN 978-0080982991

http://store.elsevier.com/product.jsp?isbn=9780080982991&pagename=search

http://store.elsevier.com/product.jsp?isbn=9780080982960&pagename=search
http://store.elsevier.com/product.jsp?isbn=9780080982991&pagename=search

CMSIS-RTOS Tutorial

Reference Material

Little Book Of Semaphores Allen B downey

http://www.greenteapress.com/semaphores/

Training Courses

In Depth Training courses for the Cortex-M processors are available from Hitex

in Germany and the UK.

Training courses in Germany

http://www.hitex.com/index.php?id=training&L=2

Training courses in the UK

http://www.hitex.co.uk/index.php?id=3431

http://www.greenteapress.com/semaphores/
http://www.hitex.com/index.php?id=training&L=2
http://www.hitex.co.uk/index.php?id=3431

	Getting Started- Installing the tools
	Installing the examples
	What Hardware do I need?
	Overview
	Accessing the CMSIS-RTOS API
	Threads
	Starting the RTOS
	Creating Threads
	Thread Management and Priority
	Multiple Instances
	Build the code and start the debugger
	Time Management
	Time Delay
	Waiting for an Event
	Exercise Time Management
	In this exercise we will look at using the basic time delay function
	Build the project and start the debugger
	Virtual Timers
	Sub millisecond delays
	Idle Demon

	Inter-Thread Communication
	Signals
	Build the project and start the debugger
	Open the GPIOB peripheral window and start the code running
	Now the port pins will appear to be switching on and off together. Synchronizing the threads gives the illusion that both threads are running in parallel.
	RTOS Interrupt Handling
	Semaphores
	Using Semaphores
	Signaling
	Multiplex
	Exercise Multiplex
	In this exercise we will look at using a semaphore to control access to a function by creating a multiplex.
	Rendezvous
	Barrier Turnstile
	Semaphore Caveats
	Mutex
	Exercise Mutex
	In each thread the code prints out the thread number. At the end of each block of characters it then prints the carriage return and new line characters.
	Mutex Caveats
	Data Exchange

	osMailQDef(mail_box, 16, mail_format);
	Configuration
	Thread Definition
	Kernel Debug support
	System Timer Configuration
	Timeslice configuration
	Scheduling Options
	Pre-emptive scheduling
	Round-Robin Scheduling
	Round-Robin Pre-emptive Scheduling
	Co-operative Multitasking
	RTX Source Code
	RTX License
	Hardware Debug
	Further Reading
	Reference Material
	http://www.greenteapress.com/semaphores/
	Training Courses

