/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file    Examples/ADC/ADC_MultiChannelSingleConversion/Src/main.c
  * @author  MCD Application Team
  * @brief   This example provides a short description of how to use the ADC
  *          peripheral with sequencer, to convert several channels.
  *          Channels converted are 1 channel on external pin and 2 internal 
  *          channels (VrefInt and temperature sensor).
  *          Moreover, voltage and temperature are then computed.
  ******************************************************************************
  * @attention
  *
  * Copyright (c) 2020 STMicroelectronics.
  * All rights reserved.
  *
  * This software is licensed under terms that can be found in the LICENSE file
  * in the root directory of this software component.
  * If no LICENSE file comes with this software, it is provided AS-IS.
  *
  ******************************************************************************
  */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */

/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */

/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* Definitions of environment analog values */
  /* Value of analog reference voltage (Vref+), connected to analog voltage   */
  /* supply Vdda (unit: mV).                                                  */
  #define VDDA_APPLI                       (3300U)
/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/
ADC_HandleTypeDef hadc;
DMA_HandleTypeDef hdma_adc;

/* USER CODE BEGIN PV */
/* Private variables ---------------------------------------------------------*/
/* ADC handler declaration */
/* Variables for ADC conversion data */
__IO   uint16_t   aADCxConvertedData[ADC_CONVERTED_DATA_BUFFER_SIZE]; /* ADC group regular conversion data (array of data) */

/* Variable to report status of DMA transfer of ADC group regular conversions */
/*  0: DMA transfer is not completed                                          */
/*  1: DMA transfer is completed                                              */
/*  2: DMA transfer has not yet been started yet (initial state)              */
__IO   uint8_t ubDmaTransferStatus = 2; /* Variable set into DMA interruption callback */

/* Variable to manage push button on board: interface between ExtLine interruption and main program */
__IO   uint8_t ubUserButtonClickEvent = RESET;  /* Event detection: Set after User Button interrupt */

/* Variables for ADC conversion data computation to physical values */
__IO uint16_t uhADCxConvertedData_VoltageGPIO_mVolt = 0U;        /* Value of voltage on GPIO pin (on which is mapped ADC channel) calculated from ADC conversion data (unit: mV) */
__IO uint16_t uhADCxConvertedData_VrefInt_mVolt = 0U;            /* Value of internal voltage reference VrefInt calculated from ADC conversion data (unit: mV) */
__IO  int16_t hADCxConvertedData_Temperature_DegreeCelsius = 0U; /* Value of temperature calculated from ADC conversion data (unit: degree Celsius) */
__IO uint16_t uhADCxConvertedData_VrefAnalog_mVolt = 0U;         /* Value of analog reference voltage (Vref+), connected to analog voltage supply Vdda, calculated from ADC conversion data (unit: mV) */

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_ADC_Init(void);
/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */

/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */
  uint32_t tmp_index_adc_converted_data = 0;
  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_DMA_Init();
  MX_ADC_Init();
  /* USER CODE BEGIN 2 */
  for (tmp_index_adc_converted_data = 0; tmp_index_adc_converted_data < ADC_CONVERTED_DATA_BUFFER_SIZE; tmp_index_adc_converted_data++)
  {
    aADCxConvertedData[tmp_index_adc_converted_data] = VAR_CONVERTED_DATA_INIT_VALUE;
  }
  
  /* Initialize LED on board */
  BSP_LED_Init(LED2);
  
  /* Configure User push-button (B1) in Interrupt mode */
  BSP_PB_Init(BUTTON_SW1, BUTTON_MODE_EXTI);

  /* Run the ADC calibration */
  if (HAL_ADCEx_Calibration_Start(&hadc) != HAL_OK)
  {
    /* Calibration Error */
    Error_Handler();
  }
  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  
  /*## Start ADC conversions ###############################################*/
  /* Start ADC group regular conversion with DMA */
  if (HAL_ADC_Start_DMA(&hadc,
                        (uint32_t *)aADCxConvertedData,
                        ADC_CONVERTED_DATA_BUFFER_SIZE
                       ) != HAL_OK)
  {
    /* ADC conversion start error */
    Error_Handler();
  }  
  
  while (1)
  {
    /* Wait for event on push button to perform following actions */
    while ((ubUserButtonClickEvent) == RESET)
    {
    }
    /* Reset variable for next loop iteration (with debounce) */
    HAL_Delay(200);
    ubUserButtonClickEvent = RESET;
	
	/* Start ADC conversion */
    /* Since sequencer is enabled in discontinuous mode, this will perform    */
    /* the conversion of the next rank in sequencer.                          */
    /* Note: For this example, conversion is triggered by software start,     */
    /*       therefore "HAL_ADC_Start()" must be called for each conversion.  */
    /*       Since DMA transfer has been initiated previously by function     */
    /*       "HAL_ADC_Start_DMA()", this function will keep DMA transfer      */
    /*       active.                                                          */
    if (HAL_ADC_Start(&hadc) != HAL_OK)
    {
      Error_Handler(); 
    }
	
	/* Wait for ADC conversion and DMA transfer completion (update of variable ubDmaTransferStatus) */
    HAL_Delay(10);
    
    
	/* Check whether ADC has converted all ranks of the sequence */
    if (ubDmaTransferStatus == 1)
    {
		
	/* Computation of ADC conversions raw data to physical values           */
	/* using LL ADC driver helper macro.                                    */
	/* Note: ADC results are transferred into array "aADCxConvertedData"    */
    /*       in the order of their rank in ADC sequencer.                   */
    uhADCxConvertedData_VoltageGPIO_mVolt        = __LL_ADC_CALC_DATA_TO_VOLTAGE(VDDA_APPLI, aADCxConvertedData[0], LL_ADC_RESOLUTION_12B);
    uhADCxConvertedData_VrefInt_mVolt            = __LL_ADC_CALC_DATA_TO_VOLTAGE(VDDA_APPLI, aADCxConvertedData[1], LL_ADC_RESOLUTION_12B);
    hADCxConvertedData_Temperature_DegreeCelsius = __LL_ADC_CALC_TEMPERATURE(VDDA_APPLI, aADCxConvertedData[2], LL_ADC_RESOLUTION_12B);
      
    /* Optionally, for this example purpose, calculate analog reference       */
    /* voltage (Vref+) from ADC conversion of internal voltage reference      */
    /* VrefInt.                                                               */
    /* This voltage should correspond to value of literal "VDDA_APPLI".       */
    /* Note: This calculation can be performed when value of voltage Vref+    */
    /* is unknown in the application.                                         */
    uhADCxConvertedData_VrefAnalog_mVolt = __LL_ADC_CALC_VREFANALOG_VOLTAGE(aADCxConvertedData[1], LL_ADC_RESOLUTION_12B);
	
	/* Clear DMA buffer when filled before refilling it */
      for (tmp_index_adc_converted_data = 0; tmp_index_adc_converted_data < ADC_CONVERTED_DATA_BUFFER_SIZE; tmp_index_adc_converted_data++)
      {
        aADCxConvertedData[tmp_index_adc_converted_data] = VAR_CONVERTED_DATA_INIT_VALUE;
      }
      /* Update status variable of DMA transfer */
      ubDmaTransferStatus = 0;
    }
   
	
    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
    /* Note: LED state depending on DMA transfer status is set into DMA       */
    /*       IRQ handler, refer to functions "HAL_ADC_ConvCpltCallback()"     */
    /*       and "HAL_ADC_ConvHalfCpltCallback()".                            */

    /* Note: ADC conversions data are stored into array                       */
    /*       "aADCxConvertedData"                                              */
    /*       (for debug: see variable content into watch window).             */

  }
  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

  /** Configure the main internal regulator output voltage
  */
  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);

  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI|RCC_OSCILLATORTYPE_MSI;
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  RCC_OscInitStruct.MSIState = RCC_MSI_ON;
  RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
  RCC_OscInitStruct.MSICalibrationValue = RCC_MSICALIBRATION_DEFAULT;
  RCC_OscInitStruct.MSIClockRange = RCC_MSIRANGE_8;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_MSI;
  RCC_OscInitStruct.PLL.PLLM = RCC_PLLM_DIV4;
  RCC_OscInitStruct.PLL.PLLN = 24;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
  RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2;
  RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }
  /** Configure the SYSCLKSource, HCLK, PCLK1 and PCLK2 clocks dividers
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK3|RCC_CLOCKTYPE_HCLK
                              |RCC_CLOCKTYPE_SYSCLK|RCC_CLOCKTYPE_PCLK1
                              |RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
  RCC_ClkInitStruct.AHBCLK3Divider = RCC_SYSCLK_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
  {
    Error_Handler();
  }
}

/**
  * @brief ADC Initialization Function
  * @param None
  * @retval None
  */
static void MX_ADC_Init(void)
{

  /* USER CODE BEGIN ADC_Init 0 */

  /* USER CODE END ADC_Init 0 */

  ADC_ChannelConfTypeDef sConfig = {0};

  /* USER CODE BEGIN ADC_Init 1 */

  /* USER CODE END ADC_Init 1 */
  /** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion)
  */
  hadc.Instance = ADC;
  hadc.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV1;
  hadc.Init.Resolution = ADC_RESOLUTION_12B;
  hadc.Init.DataAlign = ADC_DATAALIGN_RIGHT;
  hadc.Init.ScanConvMode = ADC_SCAN_ENABLE;
  hadc.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
  hadc.Init.LowPowerAutoWait = DISABLE;
  hadc.Init.LowPowerAutoPowerOff = DISABLE;
  hadc.Init.ContinuousConvMode = DISABLE;
  hadc.Init.NbrOfConversion = 3;
  hadc.Init.DiscontinuousConvMode = ENABLE;
  hadc.Init.ExternalTrigConv = ADC_SOFTWARE_START;
  hadc.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
  hadc.Init.DMAContinuousRequests = DISABLE;
  hadc.Init.Overrun = ADC_OVR_DATA_OVERWRITTEN;
  hadc.Init.SamplingTimeCommon1 = ADC_SAMPLETIME_39CYCLES_5;
  hadc.Init.SamplingTimeCommon2 = ADC_SAMPLETIME_160CYCLES_5;
  hadc.Init.OversamplingMode = DISABLE;
  hadc.Init.TriggerFrequencyMode = ADC_TRIGGER_FREQ_HIGH;
  if (HAL_ADC_Init(&hadc) != HAL_OK)
  {
    Error_Handler();
  }
  /** Configure Regular Channel
  */
  sConfig.Channel = ADC_CHANNEL_4;
  sConfig.Rank = ADC_REGULAR_RANK_1;
  sConfig.SamplingTime = ADC_SAMPLINGTIME_COMMON_1;
  if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK)
  {
    Error_Handler();
  }
  /** Configure Regular Channel
  */
  sConfig.Channel = ADC_CHANNEL_VREFINT;
  sConfig.Rank = ADC_REGULAR_RANK_2;
  sConfig.SamplingTime = ADC_SAMPLINGTIME_COMMON_2;
  if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK)
  {
    Error_Handler();
  }
  /** Configure Regular Channel
  */
  sConfig.Channel = ADC_CHANNEL_TEMPSENSOR;
  sConfig.Rank = ADC_REGULAR_RANK_3;
  if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN ADC_Init 2 */

  /* USER CODE END ADC_Init 2 */

}

/**
  * Enable DMA controller clock
  */
static void MX_DMA_Init(void)
{

  /* DMA controller clock enable */
  __HAL_RCC_DMAMUX1_CLK_ENABLE();
  __HAL_RCC_DMA1_CLK_ENABLE();

  /* DMA interrupt init */
  /* DMA1_Channel1_IRQn interrupt configuration */
  HAL_NVIC_SetPriority(DMA1_Channel1_IRQn, 0, 0);
  HAL_NVIC_EnableIRQ(DMA1_Channel1_IRQn);

}

/**
  * @brief GPIO Initialization Function
  * @param None
  * @retval None
  */
static void MX_GPIO_Init(void)
{

  /* GPIO Ports Clock Enable */
  __HAL_RCC_GPIOB_CLK_ENABLE();

}

/* USER CODE BEGIN 4 */



/******************************************************************************/
/*   USER IRQ HANDLER TREATMENT                                               */
/******************************************************************************/

/**
  * @brief EXTI line detection callbacks
  * @param GPIO_Pin: Specifies the pins connected EXTI line
  * @retval None
  */
void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin)
{
 if (GPIO_Pin == BUTTON_SW1_PIN)
 {
   /* Set variable to report push button event to main program */
   ubUserButtonClickEvent = SET;
 }
}

/**
  * @brief  Conversion complete callback in non blocking mode 
  * @param  hadc: ADC handle
  * @note   This example shows a simple way to report end of conversion
  *         and get conversion result. You can add your own implementation.
  * @retval None
  */
void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef *hadc)
{
  /* Update status variable of DMA transfer */
  ubDmaTransferStatus = 1;  

  /* Set LED depending on DMA transfer status */
  /* - Turn-on if DMA transfer is completed */
  /* - Turn-off if DMA transfer is not completed */
  BSP_LED_On(LED2);
}

/**
  * @brief  Conversion DMA half-transfer callback in non blocking mode 
  * @note   This example shows a simple way to report end of conversion
  *         and get conversion result. You can add your own implementation.
  * @retval None
  */
void HAL_ADC_ConvHalfCpltCallback(ADC_HandleTypeDef *hadc)
{
  /* Set LED depending on DMA transfer status */
  /* - Turn-on if DMA transfer is completed */
  /* - Turn-off if DMA transfer is not completed */
  BSP_LED_Off(LED2);
}

/**
  * @brief  ADC error callback in non blocking mode
  *        (ADC conversion with interruption or transfer by DMA)
  * @param  hadc: ADC handle
  * @retval None
  */
void HAL_ADC_ErrorCallback(ADC_HandleTypeDef *hadc)
{
  /* In case of ADC error, call main error handler */
  Error_Handler();
}

/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  while(1) 
  {
    /* Toggle LED2 */
    BSP_LED_Off(LED2);
    HAL_Delay(800);
    BSP_LED_On(LED2);
    HAL_Delay(10);
    BSP_LED_Off(LED2);
    HAL_Delay(180);
    BSP_LED_On(LED2);
    HAL_Delay(10);
  }
  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
    ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  Error_Handler();
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */