/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file Examples_LL/HSEM/HSEM_DualProcess/Src/main.c * @author MCD Application Team * @brief This example describes how to use HSEM peripheral to lock and unlock * hardware semaphore in the context of two process accessing the same * semaphore using the STM32WLxx HSEM LL API. * Peripheral initialization done using LL unitary services functions. ****************************************************************************** * @attention * * Copyright (c) 2020 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ /* USER CODE BEGIN PV */ /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); static void MX_GPIO_Init(void); /* USER CODE BEGIN PFP */ void Configure_HSEM(void); void LED_On(void); void LED_Blinking(uint32_t Period); /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ uint32_t lockStatus = 0; uint32_t currentProcess = 0; uint32_t currentCore = 0; /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ /* System interrupt init*/ NVIC_SetPriorityGrouping(NVIC_PRIORITYGROUP_4); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); /* USER CODE BEGIN 2 */ /* Configure HSEM */ Configure_HSEM(); /* PROCESS_A takes the semaphore with success */ lockStatus = LL_HSEM_2StepLock(HSEM, SEMAPHORE_ID, PROCESS_A); if(lockStatus != 0) { LED_Blinking(LED_BLINK_ERROR); } /* PROCESS_B takes the semaphore and fail (as already taken by PROCESS_A) */ lockStatus = LL_HSEM_2StepLock(HSEM, SEMAPHORE_ID, PROCESS_B); if(lockStatus != 1) { LED_Blinking(LED_BLINK_ERROR); } /* PROCESS_B releases the semaphore and fail (as owned by PROCESS_A) */ LL_HSEM_ReleaseLock(HSEM, SEMAPHORE_ID, PROCESS_B); /* The status of the semaphore is observed using LL_HSEM_GetStatus */ lockStatus = LL_HSEM_GetStatus(HSEM, SEMAPHORE_ID); if(lockStatus != 1) { LED_Blinking(LED_BLINK_ERROR); } /* The current process locking the semaphore is observed using LL_HSEM_GetProcessId */ currentProcess = LL_HSEM_GetProcessId(HSEM, SEMAPHORE_ID); if(currentProcess != PROCESS_A) { LED_Blinking(LED_BLINK_ERROR); } /* In multicore environment, the current core locking the semaphore is observed using LL_HSEM_GetCoreId */ /* In this example, only one core is used and so only possible values are LL_HSEM_COREID_NONE or LL_HSEM_COREID_CPU1 */ currentCore = LL_HSEM_GetCoreId(HSEM, SEMAPHORE_ID); if(currentCore != LL_HSEM_COREID_CPU1) { LED_Blinking(LED_BLINK_ERROR); } /* PROCESS_A releases the semaphore with success */ LL_HSEM_ReleaseLock(HSEM, SEMAPHORE_ID, PROCESS_A); /* The status of the semaphore is observed using LL_HSEM_GetStatus */ lockStatus = LL_HSEM_GetStatus(HSEM, SEMAPHORE_ID); if(lockStatus != 0) { LED_Blinking(LED_BLINK_ERROR); } LED_On(); /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { LL_FLASH_SetLatency(LL_FLASH_LATENCY_2); while(LL_FLASH_GetLatency() != LL_FLASH_LATENCY_2) { } LL_PWR_SetRegulVoltageScaling(LL_PWR_REGU_VOLTAGE_SCALE1); LL_RCC_MSI_Enable(); /* Wait till MSI is ready */ while(LL_RCC_MSI_IsReady() != 1) { } LL_RCC_MSI_EnableRangeSelection(); LL_RCC_MSI_SetRange(LL_RCC_MSIRANGE_11); LL_RCC_MSI_SetCalibTrimming(0); LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_MSI); /* Wait till System clock is ready */ while(LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_MSI) { } LL_RCC_SetAHBPrescaler(LL_RCC_SYSCLK_DIV_1); LL_RCC_SetAHB3Prescaler(LL_RCC_SYSCLK_DIV_1); LL_RCC_SetAPB1Prescaler(LL_RCC_APB1_DIV_1); LL_RCC_SetAPB2Prescaler(LL_RCC_APB2_DIV_1); LL_Init1msTick(48000000); /* Update CMSIS variable (which can be updated also through SystemCoreClockUpdate function) */ LL_SetSystemCoreClock(48000000); } /** * @brief GPIO Initialization Function * @param None * @retval None */ static void MX_GPIO_Init(void) { LL_GPIO_InitTypeDef GPIO_InitStruct = {0}; /* GPIO Ports Clock Enable */ LL_AHB2_GRP1_EnableClock(LL_AHB2_GRP1_PERIPH_GPIOB); /**/ LL_GPIO_ResetOutputPin(LED2_GPIO_Port, LED2_Pin); /**/ GPIO_InitStruct.Pin = LED2_Pin; GPIO_InitStruct.Mode = LL_GPIO_MODE_OUTPUT; GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_LOW; GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_PUSHPULL; GPIO_InitStruct.Pull = LL_GPIO_PULL_NO; LL_GPIO_Init(LED2_GPIO_Port, &GPIO_InitStruct); } /* USER CODE BEGIN 4 */ /** * @brief This function configures HSEM Instance. * @note This function is used to : * - Enable peripheral clock for HSEM. * @param None * @retval None */ void Configure_HSEM(void) { /* Enable peripheral clock for RNG */ LL_AHB3_GRP1_EnableClock(LL_AHB3_GRP1_PERIPH_HSEM); } /** * @brief Turn-on LED2. * @param None * @retval None */ void LED_On(void) { /* Turn LED2 on */ LL_GPIO_SetOutputPin(LED2_GPIO_Port, LED2_Pin); } /** * @brief Set LED2 to Blinking mode for an infinite loop (toggle period based on value provided as input parameter). * @param Period : Period of time (in ms) between each toggling of LED * This parameter can be user defined values. Pre-defined values used in that example are : * @arg LED_BLINK_FAST : Fast Blinking * @arg LED_BLINK_SLOW : Slow Blinking * @arg LED_BLINK_ERROR : Error specific Blinking * @retval None */ void LED_Blinking(uint32_t Period) { /* Toggle LED2 in an infinite loop */ while (1) { LL_GPIO_TogglePin(LED2_GPIO_Port, LED2_Pin); LL_mDelay(Period); } } /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d", file, line) */ /* Infinite loop */ while (1) { } /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */