/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file Examples_LL/CRC/CRC_UserDefinedPolynomial/Src/main.c * @author MCD Application Team * @brief This example describes how to use CRC peripheral for generating 8-bit CRC value * for an input data Buffer, based on a user defined polynomial value, * using the STM32WLxx CRC LL API. * Peripheral initialization done using LL unitary services functions. ****************************************************************************** * @attention * * Copyright (c) 2020 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ #define BUFFER_SIZE 39 /* 9 u32 + 1 u16 + 1 u8 */ /* 8-bit long user defined Polynomial value for this example In this example, the polynomial is set manually to 0x9B that is X^8 + X^7 + X^4 + X^3 + X + 1. */ #define CRC8_POLYNOMIAL_VALUE 0x9B /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ /* USER CODE BEGIN PV */ /* Used for storing CRC Value */ __IO uint8_t ubCRCValue = 0; static const uint8_t aDataBuffer[BUFFER_SIZE] = { 0x21, 0x10, 0x00, 0x00, 0x63, 0x30, 0x42, 0x20, 0xa5, 0x50, 0x84, 0x40, 0xe7, 0x70, 0xc6, 0x60, 0x4a, 0xa1, 0x29, 0x91, 0x8c, 0xc1, 0x6b, 0xb1, 0xce, 0xe1, 0xad, 0xd1, 0x31, 0x12, 0xef, 0xf1, 0x52, 0x22, 0x73, 0x32, 0xa1, 0xb2, 0xc3 }; /* Expected CRC Value */ uint8_t ubExpectedCRCValue = 0x0C; /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_CRC_Init(void); /* USER CODE BEGIN PFP */ uint8_t Calculate_CRC(uint32_t); void CheckCRCResultValue(void); void LED_On(void); void LED_Blinking(uint32_t Period); /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ /* System interrupt init*/ NVIC_SetPriorityGrouping(NVIC_PRIORITYGROUP_4); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_CRC_Init(); /* USER CODE BEGIN 2 */ /* Perform CRC calculation on data contained in aDataBuffer */ ubCRCValue = Calculate_CRC(BUFFER_SIZE); /* Check if CRC computed result value is equal to expected one */ CheckCRCResultValue(); /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { LL_FLASH_SetLatency(LL_FLASH_LATENCY_2); while(LL_FLASH_GetLatency() != LL_FLASH_LATENCY_2) { } LL_PWR_SetRegulVoltageScaling(LL_PWR_REGU_VOLTAGE_SCALE1); LL_RCC_MSI_Enable(); /* Wait till MSI is ready */ while(LL_RCC_MSI_IsReady() != 1) { } LL_RCC_MSI_EnableRangeSelection(); LL_RCC_MSI_SetRange(LL_RCC_MSIRANGE_11); LL_RCC_MSI_SetCalibTrimming(0); LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_MSI); /* Wait till System clock is ready */ while(LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_MSI) { } LL_RCC_SetAHBPrescaler(LL_RCC_SYSCLK_DIV_1); LL_RCC_SetAHB3Prescaler(LL_RCC_SYSCLK_DIV_1); LL_RCC_SetAPB1Prescaler(LL_RCC_APB1_DIV_1); LL_RCC_SetAPB2Prescaler(LL_RCC_APB2_DIV_1); LL_Init1msTick(48000000); /* Update CMSIS variable (which can be updated also through SystemCoreClockUpdate function) */ LL_SetSystemCoreClock(48000000); } /** * @brief CRC Initialization Function * @param None * @retval None */ static void MX_CRC_Init(void) { /* USER CODE BEGIN CRC_Init 0 */ /* USER CODE END CRC_Init 0 */ /* Peripheral clock enable */ LL_AHB1_GRP1_EnableClock(LL_AHB1_GRP1_PERIPH_CRC); /* USER CODE BEGIN CRC_Init 1 */ /* USER CODE END CRC_Init 1 */ LL_CRC_SetInputDataReverseMode(CRC, LL_CRC_INDATA_REVERSE_NONE); LL_CRC_SetOutputDataReverseMode(CRC, LL_CRC_OUTDATA_REVERSE_NONE); LL_CRC_SetPolynomialCoef(CRC, LL_CRC_DEFAULT_CRC32_POLY); LL_CRC_SetPolynomialSize(CRC, LL_CRC_POLYLENGTH_32B); LL_CRC_SetInitialData(CRC, LL_CRC_DEFAULT_CRC_INITVALUE); /* USER CODE BEGIN CRC_Init 2 */ /* Configure CRC calculation unit with user defined polynomial value, 8-bit long */ LL_CRC_SetPolynomialCoef(CRC, CRC8_POLYNOMIAL_VALUE); LL_CRC_SetPolynomialSize(CRC, LL_CRC_POLYLENGTH_8B); /* USER CODE END CRC_Init 2 */ } /** * @brief GPIO Initialization Function * @param None * @retval None */ static void MX_GPIO_Init(void) { LL_GPIO_InitTypeDef GPIO_InitStruct = {0}; /* GPIO Ports Clock Enable */ LL_AHB2_GRP1_EnableClock(LL_AHB2_GRP1_PERIPH_GPIOB); /**/ LL_GPIO_ResetOutputPin(LED2_GPIO_Port, LED2_Pin); /**/ GPIO_InitStruct.Pin = LED2_Pin; GPIO_InitStruct.Mode = LL_GPIO_MODE_OUTPUT; GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_LOW; GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_PUSHPULL; GPIO_InitStruct.Pull = LL_GPIO_PULL_NO; LL_GPIO_Init(LED2_GPIO_Port, &GPIO_InitStruct); } /* USER CODE BEGIN 4 */ /** * @brief This function performs CRC calculation on BufferSize bytes from input data buffer aDataBuffer. * @param BufferSize Nb of bytes to be processed for CRC calculation * @retval 8-bit CRC value computed on input data buffer */ uint8_t Calculate_CRC(uint32_t BufferSize) { register uint32_t data = 0; register uint32_t index = 0; /* Compute the CRC of Data Buffer array*/ for (index = 0; index < (BufferSize / 4); index++) { data = (uint32_t)((aDataBuffer[4 * index] << 24) | (aDataBuffer[4 * index + 1] << 16) | (aDataBuffer[4 * index + 2] << 8) | aDataBuffer[4 * index + 3]); LL_CRC_FeedData32(CRC, data); } /* Last bytes specific handling */ if ((BUFFER_SIZE % 4) != 0) { if (BUFFER_SIZE % 4 == 1) { LL_CRC_FeedData8(CRC, aDataBuffer[4 * index]); } if (BUFFER_SIZE % 4 == 2) { LL_CRC_FeedData16(CRC, (uint16_t)((aDataBuffer[4 * index] << 8) | aDataBuffer[4 * index + 1])); } if (BUFFER_SIZE % 4 == 3) { LL_CRC_FeedData16(CRC, (uint16_t)((aDataBuffer[4 * index] << 8) | aDataBuffer[4 * index + 1])); LL_CRC_FeedData8(CRC, aDataBuffer[4 * index + 2]); } } /* Return computed CRC value */ return (LL_CRC_ReadData8(CRC)); } /** * @brief Check CRC computation result value. * @param None * @retval None */ void CheckCRCResultValue(void) { /* Compare the CRC value to the Expected one */ if (ubCRCValue != ubExpectedCRCValue) { /* Wrong CRC value: Set LED2 to Blinking mode (Error) */ LED_Blinking(LED_BLINK_ERROR); } else { /* Right CRC value: Turn LED2 on */ LED_On(); } } /** * @brief Turn-on LED2. * @param None * @retval None */ void LED_On(void) { /* Turn LED2 on */ LL_GPIO_SetOutputPin(LED2_GPIO_Port, LED2_Pin); } /** * @brief Set LED2 to Blinking mode for an infinite loop (toggle period based on value provided as input parameter). * @param Period : Period of time (in ms) between each toggling of LED * This parameter can be user defined values. Pre-defined values used in that example are : * @arg LED_BLINK_FAST : Fast Blinking * @arg LED_BLINK_SLOW : Slow Blinking * @arg LED_BLINK_ERROR : Error specific Blinking * @retval None */ void LED_Blinking(uint32_t Period) { /* Toggle IO in an infinite loop */ while (1) { LL_GPIO_TogglePin(LED2_GPIO_Port, LED2_Pin); LL_mDelay(Period); } } /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d", file, line) */ /* Infinite loop */ while (1) { } /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */