STM32CubeWL/Middlewares/Third_Party/LoRaWAN/Mac/Region/RegionAU915.c

1097 lines
38 KiB
C

/*!
* \file RegionAU915.c
*
* \brief Region implementation for AU915
*
* \copyright Revised BSD License, see section \ref LICENSE.
*
* \code
* ______ _
* / _____) _ | |
* ( (____ _____ ____ _| |_ _____ ____| |__
* \____ \| ___ | (_ _) ___ |/ ___) _ \
* _____) ) ____| | | || |_| ____( (___| | | |
* (______/|_____)_|_|_| \__)_____)\____)_| |_|
* (C)2013-2017 Semtech
*
* ___ _____ _ ___ _ _____ ___ ___ ___ ___
* / __|_ _/_\ / __| |/ / __/ _ \| _ \/ __| __|
* \__ \ | |/ _ \ (__| ' <| _| (_) | / (__| _|
* |___/ |_/_/ \_\___|_|\_\_| \___/|_|_\\___|___|
* embedded.connectivity.solutions===============
*
* \endcode
*
* \author Miguel Luis ( Semtech )
*
* \author Gregory Cristian ( Semtech )
*
* \author Daniel Jaeckle ( STACKFORCE )
*/
/**
******************************************************************************
*
* Portions COPYRIGHT 2020 STMicroelectronics
*
* @file RegionAU915.c
* @author MCD Application Team
* @brief Region implementation for AU915
******************************************************************************
*/
#include "radio.h"
#include "RegionAU915.h"
#include "RegionBaseUS.h"
// Definitions
#define CHANNELS_MASK_SIZE 6
// A mask to select only valid 500KHz channels
#define CHANNELS_MASK_500KHZ_MASK 0x00FF
/* The HYBRID_DEFAULT_MASKx define the enabled channels in Hybrid mode*/
/* Note: they can be redefined in lorawan_conf.h*/
#ifndef HYBRID_DEFAULT_MASK0 /*enabled channels from channel 15 down to channel 0*/
#define HYBRID_DEFAULT_MASK0 0x00FF /*channel 7 down to channel 0 enabled*/
#endif
#ifndef HYBRID_DEFAULT_MASK1 /*enabled channels from channel 31 down to channel 16*/
#define HYBRID_DEFAULT_MASK1 0x0000
#endif
#ifndef HYBRID_DEFAULT_MASK2 /*enabled channels from channel 47 down to channel 32*/
#define HYBRID_DEFAULT_MASK2 0x0000
#endif
#ifndef HYBRID_DEFAULT_MASK3 /*enabled channels from channel 63 down to channel 48*/
#define HYBRID_DEFAULT_MASK3 0x0000
#endif
#ifndef HYBRID_DEFAULT_MASK4 /*enabled channels from channel 71 down to channel 64*/
#define HYBRID_DEFAULT_MASK4 0x0001
#endif
#if defined( REGION_AU915 )
/*
* Non-volatile module context.
*/
static RegionNvmDataGroup1_t* RegionNvmGroup1;
static RegionNvmDataGroup2_t* RegionNvmGroup2;
#if (defined( REGION_VERSION ) && (( REGION_VERSION == 0x02010001 ) || ( REGION_VERSION == 0x02010003 )))
static Band_t* RegionBands;
#endif /* REGION_VERSION */
static bool VerifyRfFreq( uint32_t freq )
{
// Check radio driver support
if( Radio.CheckRfFrequency( freq ) == false )
{
return false;
}
// Rx frequencies
if( ( freq < AU915_FIRST_RX1_CHANNEL ) ||
( freq > AU915_LAST_RX1_CHANNEL ) ||
( ( ( freq - ( uint32_t ) AU915_FIRST_RX1_CHANNEL ) % ( uint32_t ) AU915_STEPWIDTH_RX1_CHANNEL ) != 0 ) )
{
return false;
}
// Tx frequencies for 125kHz
// Also includes the range for 500kHz channels
if( ( freq < 915200000 ) || ( freq > 927800000 ) )
{
return false;
}
return true;
}
static TimerTime_t GetTimeOnAir( int8_t datarate, uint16_t pktLen )
{
int8_t phyDr = DataratesAU915[datarate];
uint32_t bandwidth = RegionCommonGetBandwidth( datarate, BandwidthsAU915 );
return Radio.TimeOnAir( MODEM_LORA, bandwidth, phyDr, 1, 8, false, pktLen, true );
}
#endif /* REGION_AU915 */
PhyParam_t RegionAU915GetPhyParam( GetPhyParams_t* getPhy )
{
PhyParam_t phyParam = { 0 };
#if defined( REGION_AU915 )
switch( getPhy->Attribute )
{
case PHY_MIN_RX_DR:
{
if( getPhy->DownlinkDwellTime == 0)
{
phyParam.Value = AU915_RX_MIN_DATARATE;
}
else
{
phyParam.Value = AU915_DWELL_LIMIT_DATARATE;
}
break;
}
case PHY_MIN_TX_DR:
{
if( getPhy->UplinkDwellTime == 0)
{
phyParam.Value = AU915_TX_MIN_DATARATE;
}
else
{
phyParam.Value = AU915_DWELL_LIMIT_DATARATE;
}
break;
}
case PHY_DEF_TX_DR:
{
phyParam.Value = AU915_DEFAULT_DATARATE;
break;
}
case PHY_NEXT_LOWER_TX_DR:
{
RegionCommonGetNextLowerTxDrParams_t nextLowerTxDrParams =
{
.CurrentDr = getPhy->Datarate,
.MaxDr = ( int8_t )AU915_TX_MAX_DATARATE,
.MinDr = ( int8_t )( ( getPhy->UplinkDwellTime == 0 ) ? AU915_TX_MIN_DATARATE : AU915_DWELL_LIMIT_DATARATE ),
.NbChannels = AU915_MAX_NB_CHANNELS,
.ChannelsMask = RegionNvmGroup2->ChannelsMask,
.Channels = RegionNvmGroup2->Channels,
};
phyParam.Value = RegionCommonGetNextLowerTxDr( &nextLowerTxDrParams );
break;
}
case PHY_MAX_TX_POWER:
{
phyParam.Value = AU915_MAX_TX_POWER;
break;
}
case PHY_DEF_TX_POWER:
{
phyParam.Value = AU915_DEFAULT_TX_POWER;
break;
}
case PHY_DEF_ADR_ACK_LIMIT:
{
phyParam.Value = REGION_COMMON_DEFAULT_ADR_ACK_LIMIT;
break;
}
case PHY_DEF_ADR_ACK_DELAY:
{
phyParam.Value = REGION_COMMON_DEFAULT_ADR_ACK_DELAY;
break;
}
case PHY_MAX_PAYLOAD:
{
if( getPhy->UplinkDwellTime == 0 )
{
phyParam.Value = MaxPayloadOfDatarateDwell0AU915[getPhy->Datarate];
}
else
{
phyParam.Value = MaxPayloadOfDatarateDwell1AU915[getPhy->Datarate];
}
break;
}
case PHY_MAX_PAYLOAD_REPEATER:
{
if( getPhy->UplinkDwellTime == 0)
{
phyParam.Value = MaxPayloadOfDatarateRepeaterDwell0AU915[getPhy->Datarate];
}
else
{
phyParam.Value = MaxPayloadOfDatarateRepeaterDwell1AU915[getPhy->Datarate];
}
break;
}
case PHY_DUTY_CYCLE:
{
phyParam.Value = AU915_DUTY_CYCLE_ENABLED;
break;
}
case PHY_MAX_RX_WINDOW:
{
phyParam.Value = AU915_MAX_RX_WINDOW;
break;
}
case PHY_RECEIVE_DELAY1:
{
phyParam.Value = REGION_COMMON_DEFAULT_RECEIVE_DELAY1;
break;
}
case PHY_RECEIVE_DELAY2:
{
phyParam.Value = REGION_COMMON_DEFAULT_RECEIVE_DELAY2;
break;
}
case PHY_JOIN_ACCEPT_DELAY1:
{
phyParam.Value = REGION_COMMON_DEFAULT_JOIN_ACCEPT_DELAY1;
break;
}
case PHY_JOIN_ACCEPT_DELAY2:
{
phyParam.Value = REGION_COMMON_DEFAULT_JOIN_ACCEPT_DELAY2;
break;
}
#if (defined( REGION_VERSION ) && ( REGION_VERSION == 0x01010003 ))
case PHY_MAX_FCNT_GAP:
{
phyParam.Value = REGION_COMMON_DEFAULT_MAX_FCNT_GAP;
break;
}
case PHY_ACK_TIMEOUT:
{
phyParam.Value = ( REGION_COMMON_DEFAULT_ACK_TIMEOUT + randr( -REGION_COMMON_DEFAULT_ACK_TIMEOUT_RND, REGION_COMMON_DEFAULT_ACK_TIMEOUT_RND ) );
break;
}
#elif (defined( REGION_VERSION ) && (( REGION_VERSION == 0x02010001 ) || ( REGION_VERSION == 0x02010003 )))
case PHY_RETRANSMIT_TIMEOUT:
{
phyParam.Value = ( REGION_COMMON_DEFAULT_RETRANSMIT_TIMEOUT + randr( -REGION_COMMON_DEFAULT_RETRANSMIT_TIMEOUT_RND, REGION_COMMON_DEFAULT_RETRANSMIT_TIMEOUT_RND ) );
break;
}
#endif /* REGION_VERSION */
case PHY_DEF_DR1_OFFSET:
{
phyParam.Value = REGION_COMMON_DEFAULT_RX1_DR_OFFSET;
break;
}
case PHY_DEF_RX2_FREQUENCY:
{
phyParam.Value = AU915_RX_WND_2_FREQ;
break;
}
case PHY_DEF_RX2_DR:
{
phyParam.Value = AU915_RX_WND_2_DR;
break;
}
case PHY_CHANNELS_MASK:
{
phyParam.ChannelsMask = RegionNvmGroup2->ChannelsMask;
break;
}
case PHY_CHANNELS_DEFAULT_MASK:
{
phyParam.ChannelsMask = RegionNvmGroup2->ChannelsDefaultMask;
break;
}
case PHY_MAX_NB_CHANNELS:
{
phyParam.Value = AU915_MAX_NB_CHANNELS;
break;
}
case PHY_CHANNELS:
{
phyParam.Channels = RegionNvmGroup2->Channels;
break;
}
case PHY_DEF_UPLINK_DWELL_TIME:
{
phyParam.Value = AU915_DEFAULT_UPLINK_DWELL_TIME;
break;
}
case PHY_DEF_DOWNLINK_DWELL_TIME:
{
phyParam.Value = REGION_COMMON_DEFAULT_DOWNLINK_DWELL_TIME;
break;
}
case PHY_DEF_MAX_EIRP:
{
phyParam.fValue = AU915_DEFAULT_MAX_EIRP;
break;
}
case PHY_DEF_ANTENNA_GAIN:
{
phyParam.fValue = AU915_DEFAULT_ANTENNA_GAIN;
break;
}
case PHY_BEACON_CHANNEL_FREQ:
{
phyParam.Value = RegionBaseUSCalcDownlinkFrequency( getPhy->Channel,
AU915_BEACON_CHANNEL_FREQ,
AU915_BEACON_CHANNEL_STEPWIDTH );
break;
}
case PHY_BEACON_FORMAT:
{
phyParam.BeaconFormat.BeaconSize = AU915_BEACON_SIZE;
phyParam.BeaconFormat.Rfu1Size = AU915_RFU1_SIZE;
phyParam.BeaconFormat.Rfu2Size = AU915_RFU2_SIZE;
break;
}
case PHY_BEACON_CHANNEL_DR:
{
phyParam.Value = AU915_BEACON_CHANNEL_DR;
break;
}
case PHY_BEACON_NB_CHANNELS:
{
phyParam.Value = AU915_BEACON_NB_CHANNELS;
break;
}
case PHY_PING_SLOT_CHANNEL_FREQ:
{
phyParam.Value = RegionBaseUSCalcDownlinkFrequency( getPhy->Channel,
AU915_PING_SLOT_CHANNEL_FREQ,
AU915_BEACON_CHANNEL_STEPWIDTH );
break;
}
case PHY_PING_SLOT_CHANNEL_DR:
{
phyParam.Value = AU915_PING_SLOT_CHANNEL_DR;
break;
}
case PHY_PING_SLOT_NB_CHANNELS:
{
phyParam.Value = AU915_BEACON_NB_CHANNELS;
break;
}
case PHY_SF_FROM_DR:
{
phyParam.Value = DataratesAU915[getPhy->Datarate];
break;
}
case PHY_BW_FROM_DR:
{
phyParam.Value = RegionCommonGetBandwidth( getPhy->Datarate, BandwidthsAU915 );
break;
}
default:
{
break;
}
}
#endif /* REGION_AU915 */
return phyParam;
}
void RegionAU915SetBandTxDone( SetBandTxDoneParams_t* txDone )
{
#if defined( REGION_AU915 )
#if (defined( REGION_VERSION ) && ( REGION_VERSION == 0x01010003 ))
RegionCommonSetBandTxDone( &RegionNvmGroup1->Bands[RegionNvmGroup2->Channels[txDone->Channel].Band],
txDone->LastTxAirTime, txDone->Joined, txDone->ElapsedTimeSinceStartUp );
#elif (defined( REGION_VERSION ) && (( REGION_VERSION == 0x02010001 ) || ( REGION_VERSION == 0x02010003 )))
RegionCommonSetBandTxDone( &RegionBands[RegionNvmGroup2->Channels[txDone->Channel].Band],
txDone->LastTxAirTime, txDone->Joined, txDone->ElapsedTimeSinceStartUp );
#endif /* REGION_VERSION */
#endif /* REGION_AU915 */
}
void RegionAU915InitDefaults( InitDefaultsParams_t* params )
{
#if defined( REGION_AU915 )
Band_t bands[AU915_MAX_NB_BANDS] =
{
AU915_BAND0
};
switch( params->Type )
{
case INIT_TYPE_DEFAULTS:
{
if( ( params->NvmGroup1 == NULL ) || ( params->NvmGroup2 == NULL ) )
{
return;
}
RegionNvmGroup1 = (RegionNvmDataGroup1_t*) params->NvmGroup1;
RegionNvmGroup2 = (RegionNvmDataGroup2_t*) params->NvmGroup2;
#if (defined( REGION_VERSION ) && (( REGION_VERSION == 0x02010001 ) || ( REGION_VERSION == 0x02010003 )))
RegionBands = (Band_t*) params->Bands;
#endif /* REGION_VERSION */
// Initialize 8 bit channel groups index
RegionNvmGroup1->JoinChannelGroupsCurrentIndex = 0;
// Initialize the join trials counter
RegionNvmGroup1->JoinTrialsCounter = 0;
// Default bands
#if (defined( REGION_VERSION ) && ( REGION_VERSION == 0x01010003 ))
memcpy1( ( uint8_t* )RegionNvmGroup1->Bands, ( uint8_t* )bands, sizeof( Band_t ) * AU915_MAX_NB_BANDS );
#elif (defined( REGION_VERSION ) && (( REGION_VERSION == 0x02010001 ) || ( REGION_VERSION == 0x02010003 )))
memcpy1( ( uint8_t* )RegionBands, ( uint8_t* )bands, sizeof( Band_t ) * AU915_MAX_NB_BANDS );
#endif /* REGION_VERSION */
// Channels
for( uint8_t i = 0; i < AU915_MAX_NB_CHANNELS - 8; i++ )
{
// 125 kHz channels
RegionNvmGroup2->Channels[i].Frequency = 915200000 + i * 200000;
RegionNvmGroup2->Channels[i].DrRange.Value = ( DR_5 << 4 ) | DR_0;
RegionNvmGroup2->Channels[i].Band = 0;
}
for( uint8_t i = AU915_MAX_NB_CHANNELS - 8; i < AU915_MAX_NB_CHANNELS; i++ )
{
// 500 kHz channels
RegionNvmGroup2->Channels[i].Frequency = 915900000 + ( i - ( AU915_MAX_NB_CHANNELS - 8 ) ) * 1600000;
RegionNvmGroup2->Channels[i].DrRange.Value = ( DR_6 << 4 ) | DR_6;
RegionNvmGroup2->Channels[i].Band = 0;
}
// Initialize channels default mask
#if ( HYBRID_ENABLED == 1 )
RegionNvmGroup2->ChannelsDefaultMask[0] = HYBRID_DEFAULT_MASK0;
RegionNvmGroup2->ChannelsDefaultMask[1] = HYBRID_DEFAULT_MASK1;
RegionNvmGroup2->ChannelsDefaultMask[2] = HYBRID_DEFAULT_MASK2;
RegionNvmGroup2->ChannelsDefaultMask[3] = HYBRID_DEFAULT_MASK3;
RegionNvmGroup2->ChannelsDefaultMask[4] = HYBRID_DEFAULT_MASK4;
RegionNvmGroup2->ChannelsDefaultMask[5] = 0x0000;
#else
RegionNvmGroup2->ChannelsDefaultMask[0] = 0xFFFF;
RegionNvmGroup2->ChannelsDefaultMask[1] = 0xFFFF;
RegionNvmGroup2->ChannelsDefaultMask[2] = 0xFFFF;
RegionNvmGroup2->ChannelsDefaultMask[3] = 0xFFFF;
RegionNvmGroup2->ChannelsDefaultMask[4] = 0x00FF;
RegionNvmGroup2->ChannelsDefaultMask[5] = 0x0000;
#endif /* HYBRID_ENABLED == 1 */
// Copy channels default mask
RegionCommonChanMaskCopy( RegionNvmGroup2->ChannelsMask, RegionNvmGroup2->ChannelsDefaultMask, CHANNELS_MASK_SIZE );
// Copy into channels mask remaining
RegionCommonChanMaskCopy( RegionNvmGroup1->ChannelsMaskRemaining, RegionNvmGroup2->ChannelsMask, CHANNELS_MASK_SIZE );
break;
}
case INIT_TYPE_RESET_TO_DEFAULT_CHANNELS:
{
// Intentional fallthrough
}
case INIT_TYPE_ACTIVATE_DEFAULT_CHANNELS:
{
// Copy channels default mask
RegionCommonChanMaskCopy( RegionNvmGroup2->ChannelsMask, RegionNvmGroup2->ChannelsDefaultMask, CHANNELS_MASK_SIZE );
for( uint8_t i = 0; i < CHANNELS_MASK_SIZE; i++ )
{ // Copy-And the channels mask
RegionNvmGroup1->ChannelsMaskRemaining[i] &= RegionNvmGroup2->ChannelsMask[i];
}
break;
}
default:
{
break;
}
}
#endif /* REGION_AU915 */
}
bool RegionAU915Verify( VerifyParams_t* verify, PhyAttribute_t phyAttribute )
{
#if defined( REGION_AU915 )
switch( phyAttribute )
{
case PHY_FREQUENCY:
{
return VerifyRfFreq( verify->Frequency );
}
case PHY_TX_DR:
case PHY_DEF_TX_DR:
{
if( verify->DatarateParams.UplinkDwellTime == 0 )
{
return RegionCommonValueInRange( verify->DatarateParams.Datarate, AU915_TX_MIN_DATARATE, AU915_TX_MAX_DATARATE );
}
else
{
return RegionCommonValueInRange( verify->DatarateParams.Datarate, AU915_DWELL_LIMIT_DATARATE, AU915_TX_MAX_DATARATE );
}
}
case PHY_RX_DR:
{
if( verify->DatarateParams.UplinkDwellTime == 0 )
{
return RegionCommonValueInRange( verify->DatarateParams.Datarate, AU915_RX_MIN_DATARATE, AU915_RX_MAX_DATARATE );
}
else
{
return RegionCommonValueInRange( verify->DatarateParams.Datarate, AU915_DWELL_LIMIT_DATARATE, AU915_RX_MAX_DATARATE );
}
}
case PHY_DEF_TX_POWER:
case PHY_TX_POWER:
{
// Remark: switched min and max!
return RegionCommonValueInRange( verify->TxPower, AU915_MAX_TX_POWER, AU915_MIN_TX_POWER );
}
case PHY_DUTY_CYCLE:
{
return AU915_DUTY_CYCLE_ENABLED;
}
default:
return false;
}
#else
return false;
#endif /* REGION_AU915 */
}
void RegionAU915ApplyCFList( ApplyCFListParams_t* applyCFList )
{
#if defined( REGION_AU915 )
// Size of the optional CF list must be 16 byte
if( applyCFList->Size != 16 )
{
return;
}
// Last byte CFListType must be 0x01 to indicate the CFList contains a series of ChMask fields
if( applyCFList->Payload[15] != 0x01 )
{
return;
}
// ChMask0 - ChMask4 must be set (every ChMask has 16 bit)
for( uint8_t chMaskItr = 0, cntPayload = 0; chMaskItr <= 4; chMaskItr++, cntPayload+=2 )
{
RegionNvmGroup2->ChannelsMask[chMaskItr] = (uint16_t) (0x00FF & applyCFList->Payload[cntPayload]);
RegionNvmGroup2->ChannelsMask[chMaskItr] |= (uint16_t) (applyCFList->Payload[cntPayload+1] << 8);
if( chMaskItr == 4 )
{
RegionNvmGroup2->ChannelsMask[chMaskItr] = RegionNvmGroup2->ChannelsMask[chMaskItr] & CHANNELS_MASK_500KHZ_MASK;
}
// Set the channel mask to the remaining
RegionNvmGroup1->ChannelsMaskRemaining[chMaskItr] &= RegionNvmGroup2->ChannelsMask[chMaskItr];
}
#endif /* REGION_AU915 */
}
bool RegionAU915ChanMaskSet( ChanMaskSetParams_t* chanMaskSet )
{
#if defined( REGION_AU915 )
switch( chanMaskSet->ChannelsMaskType )
{
case CHANNELS_MASK:
{
RegionCommonChanMaskCopy( RegionNvmGroup2->ChannelsMask, chanMaskSet->ChannelsMaskIn, CHANNELS_MASK_SIZE );
RegionNvmGroup2->ChannelsDefaultMask[4] = RegionNvmGroup2->ChannelsDefaultMask[4] & CHANNELS_MASK_500KHZ_MASK;
RegionNvmGroup2->ChannelsDefaultMask[5] = 0x0000;
for( uint8_t i = 0; i < 6; i++ )
{ // Copy-And the channels mask
RegionNvmGroup1->ChannelsMaskRemaining[i] &= RegionNvmGroup2->ChannelsMask[i];
}
break;
}
case CHANNELS_DEFAULT_MASK:
{
RegionCommonChanMaskCopy( RegionNvmGroup2->ChannelsDefaultMask, chanMaskSet->ChannelsMaskIn, CHANNELS_MASK_SIZE );
break;
}
default:
return false;
}
return true;
#else
return false;
#endif /* REGION_AU915 */
}
void RegionAU915ComputeRxWindowParameters( int8_t datarate, uint8_t minRxSymbols, uint32_t rxError, RxConfigParams_t *rxConfigParams )
{
#if defined( REGION_AU915 )
uint32_t tSymbolInUs = 0;
// Get the datarate, perform a boundary check
rxConfigParams->Datarate = MIN( datarate, AU915_RX_MAX_DATARATE );
rxConfigParams->Bandwidth = RegionCommonGetBandwidth( rxConfigParams->Datarate, BandwidthsAU915 );
tSymbolInUs = RegionCommonComputeSymbolTimeLoRa( DataratesAU915[rxConfigParams->Datarate], BandwidthsAU915[rxConfigParams->Datarate] );
RegionCommonComputeRxWindowParameters( tSymbolInUs, minRxSymbols, rxError, Radio.GetWakeupTime( ), &rxConfigParams->WindowTimeout, &rxConfigParams->WindowOffset );
#endif /* REGION_AU915 */
}
bool RegionAU915RxConfig( RxConfigParams_t* rxConfig, int8_t* datarate )
{
#if defined( REGION_AU915 )
int8_t dr = rxConfig->Datarate;
uint8_t maxPayload = 0;
int8_t phyDr = 0;
uint32_t frequency = rxConfig->Frequency;
if( Radio.GetStatus( ) != RF_IDLE )
{
return false;
}
if( rxConfig->RxSlot == RX_SLOT_WIN_1 )
{
// Apply window 1 frequency
frequency = AU915_FIRST_RX1_CHANNEL + ( rxConfig->Channel % 8 ) * AU915_STEPWIDTH_RX1_CHANNEL;
}
// Read the physical datarate from the datarates table
phyDr = DataratesAU915[dr];
Radio.SetChannel( frequency );
// Radio configuration
Radio.SetRxConfig( MODEM_LORA, rxConfig->Bandwidth, phyDr, 1, 0, 8, rxConfig->WindowTimeout, false, 0, false, 0, 0, true, rxConfig->RxContinuous );
if( rxConfig->RepeaterSupport == true )
{
maxPayload = MaxPayloadOfDatarateRepeaterDwell0AU915[dr];
}
else
{
maxPayload = MaxPayloadOfDatarateDwell0AU915[dr];
}
Radio.SetMaxPayloadLength( MODEM_LORA, maxPayload + LORAMAC_FRAME_PAYLOAD_OVERHEAD_SIZE );
RegionCommonRxConfigPrint(rxConfig->RxSlot, frequency, dr);
*datarate = (uint8_t) dr;
return true;
#else
return false;
#endif /* REGION_AU915 */
}
bool RegionAU915TxConfig( TxConfigParams_t* txConfig, int8_t* txPower, TimerTime_t* txTimeOnAir )
{
#if defined( REGION_AU915 )
int8_t phyDr = DataratesAU915[txConfig->Datarate];
#if (defined( REGION_VERSION ) && ( REGION_VERSION == 0x01010003 ))
int8_t txPowerLimited = RegionCommonLimitTxPower( txConfig->TxPower, RegionNvmGroup1->Bands[RegionNvmGroup2->Channels[txConfig->Channel].Band].TxMaxPower );
#elif (defined( REGION_VERSION ) && (( REGION_VERSION == 0x02010001 ) || ( REGION_VERSION == 0x02010003 )))
int8_t txPowerLimited = RegionCommonLimitTxPower( txConfig->TxPower, RegionBands[RegionNvmGroup2->Channels[txConfig->Channel].Band].TxMaxPower );
#endif /* REGION_VERSION */
uint32_t bandwidth = RegionCommonGetBandwidth( txConfig->Datarate, BandwidthsAU915 );
int8_t phyTxPower = 0;
// Calculate physical TX power
phyTxPower = RegionCommonComputeTxPower( txPowerLimited, txConfig->MaxEirp, txConfig->AntennaGain );
// Setup the radio frequency
Radio.SetChannel( RegionNvmGroup2->Channels[txConfig->Channel].Frequency );
Radio.SetTxConfig( MODEM_LORA, phyTxPower, 0, bandwidth, phyDr, 1, 8, false, true, 0, 0, false, 4000 );
RegionCommonTxConfigPrint(RegionNvmGroup2->Channels[txConfig->Channel].Frequency, txConfig->Datarate);
// Setup maximum payload length of the radio driver
Radio.SetMaxPayloadLength( MODEM_LORA, txConfig->PktLen );
// Update time-on-air
*txTimeOnAir = GetTimeOnAir( txConfig->Datarate, txConfig->PktLen );
*txPower = txPowerLimited;
return true;
#else
return false;
#endif /* REGION_AU915 */
}
uint8_t RegionAU915LinkAdrReq( LinkAdrReqParams_t* linkAdrReq, int8_t* drOut, int8_t* txPowOut, uint8_t* nbRepOut, uint8_t* nbBytesParsed )
{
uint8_t status = 0x07;
#if defined( REGION_AU915 )
RegionCommonLinkAdrParams_t linkAdrParams = { 0 };
uint8_t nextIndex = 0;
uint8_t bytesProcessed = 0;
uint16_t channelsMask[6] = { 0, 0, 0, 0, 0, 0 };
GetPhyParams_t getPhy;
PhyParam_t phyParam;
RegionCommonLinkAdrReqVerifyParams_t linkAdrVerifyParams;
// Initialize local copy of channels mask
RegionCommonChanMaskCopy( channelsMask, RegionNvmGroup2->ChannelsMask, 6 );
while( bytesProcessed < linkAdrReq->PayloadSize )
{
nextIndex = RegionCommonParseLinkAdrReq( &( linkAdrReq->Payload[bytesProcessed] ), &linkAdrParams );
if( nextIndex == 0 )
break; // break loop, since no more request has been found
// Update bytes processed
bytesProcessed += nextIndex;
// Revert status, as we only check the last ADR request for the channel mask KO
status = 0x07;
if( linkAdrParams.ChMaskCtrl == 6 )
{
// Enable all 125 kHz channels
channelsMask[0] = 0xFFFF;
channelsMask[1] = 0xFFFF;
channelsMask[2] = 0xFFFF;
channelsMask[3] = 0xFFFF;
// Apply chMask to channels 64 to 71
channelsMask[4] = linkAdrParams.ChMask & CHANNELS_MASK_500KHZ_MASK;
}
else if( linkAdrParams.ChMaskCtrl == 7 )
{
// Disable all 125 kHz channels
channelsMask[0] = 0x0000;
channelsMask[1] = 0x0000;
channelsMask[2] = 0x0000;
channelsMask[3] = 0x0000;
// Apply chMask to channels 64 to 71
channelsMask[4] = linkAdrParams.ChMask & CHANNELS_MASK_500KHZ_MASK;
}
else if( linkAdrParams.ChMaskCtrl == 5 )
{
// Start value for comparison
uint8_t bitMask = 1;
// cntChannelMask for channelsMask[0] until channelsMask[3]
uint8_t cntChannelMask = 0;
// i will be 1, 2, 3, ..., 7
for( uint8_t i = 0; i <= 7; i++ )
{
// 8 MSBs of ChMask are RFU
// Checking if the ChMask is set, then true
if( ( ( linkAdrParams.ChMask & 0x00FF ) & ( bitMask << i ) ) != 0 )
{
if( ( i % 2 ) == 0 )
{
// Enable a bank of 8 125kHz channels, 8 LSBs
channelsMask[cntChannelMask] |= 0x00FF;
// Enable the corresponding 500kHz channel
channelsMask[4] |= ( bitMask << i );
}
else
{
// Enable a bank of 8 125kHz channels, 8 MSBs
channelsMask[cntChannelMask] |= 0xFF00;
// Enable the corresponding 500kHz channel
channelsMask[4] |= ( bitMask << i );
// cntChannelMask increment for uneven i
cntChannelMask++;
}
}
// ChMask is not set
else
{
if( ( i % 2 ) == 0 )
{
// Disable a bank of 8 125kHz channels, 8 LSBs
channelsMask[cntChannelMask] &= 0xFF00;
// Disable the corresponding 500kHz channel
channelsMask[4] &= ~( bitMask << i );
}
else
{
// Enable a bank of 8 125kHz channels, 8 MSBs
channelsMask[cntChannelMask] &= 0x00FF;
// Disable the corresponding 500kHz channel
channelsMask[4] &= ~( bitMask << i );
// cntChannelMask increment for uneven i
cntChannelMask++;
}
}
}
}
else
{
channelsMask[linkAdrParams.ChMaskCtrl] = linkAdrParams.ChMask;
}
}
// FCC 15.247 paragraph F mandates to hop on at least 2 125 kHz channels
if( ( linkAdrParams.Datarate < DR_6 ) && ( RegionCommonCountChannels( channelsMask, 0, 4 ) < 2 ) )
{
status &= 0xFE; // Channel mask KO
}
// Get the minimum possible datarate
getPhy.Attribute = PHY_MIN_TX_DR;
getPhy.UplinkDwellTime = linkAdrReq->UplinkDwellTime;
phyParam = RegionAU915GetPhyParam( &getPhy );
linkAdrVerifyParams.Status = status;
linkAdrVerifyParams.AdrEnabled = linkAdrReq->AdrEnabled;
linkAdrVerifyParams.Datarate = linkAdrParams.Datarate;
linkAdrVerifyParams.TxPower = linkAdrParams.TxPower;
linkAdrVerifyParams.NbRep = linkAdrParams.NbRep;
linkAdrVerifyParams.CurrentDatarate = linkAdrReq->CurrentDatarate;
linkAdrVerifyParams.CurrentTxPower = linkAdrReq->CurrentTxPower;
linkAdrVerifyParams.CurrentNbRep = linkAdrReq->CurrentNbRep;
linkAdrVerifyParams.NbChannels = AU915_MAX_NB_CHANNELS;
linkAdrVerifyParams.ChannelsMask = channelsMask;
linkAdrVerifyParams.MinDatarate = ( int8_t )phyParam.Value;
linkAdrVerifyParams.MaxDatarate = AU915_TX_MAX_DATARATE;
linkAdrVerifyParams.Channels = RegionNvmGroup2->Channels;
linkAdrVerifyParams.MinTxPower = AU915_MIN_TX_POWER;
linkAdrVerifyParams.MaxTxPower = AU915_MAX_TX_POWER;
linkAdrVerifyParams.Version = linkAdrReq->Version;
// Verify the parameters and update, if necessary
status = RegionCommonLinkAdrReqVerifyParams( &linkAdrVerifyParams, &linkAdrParams.Datarate, &linkAdrParams.TxPower, &linkAdrParams.NbRep );
// Update channelsMask if everything is correct
if( status == 0x07 )
{
// Copy Mask
RegionCommonChanMaskCopy( RegionNvmGroup2->ChannelsMask, channelsMask, 6 );
RegionNvmGroup1->ChannelsMaskRemaining[0] &= RegionNvmGroup2->ChannelsMask[0];
RegionNvmGroup1->ChannelsMaskRemaining[1] &= RegionNvmGroup2->ChannelsMask[1];
RegionNvmGroup1->ChannelsMaskRemaining[2] &= RegionNvmGroup2->ChannelsMask[2];
RegionNvmGroup1->ChannelsMaskRemaining[3] &= RegionNvmGroup2->ChannelsMask[3];
RegionNvmGroup1->ChannelsMaskRemaining[4] = RegionNvmGroup2->ChannelsMask[4];
RegionNvmGroup1->ChannelsMaskRemaining[5] = RegionNvmGroup2->ChannelsMask[5];
}
// Update status variables
*drOut = linkAdrParams.Datarate;
*txPowOut = linkAdrParams.TxPower;
*nbRepOut = linkAdrParams.NbRep;
*nbBytesParsed = bytesProcessed;
#endif /* REGION_AU915 */
return status;
}
uint8_t RegionAU915RxParamSetupReq( RxParamSetupReqParams_t* rxParamSetupReq )
{
uint8_t status = 0x07;
#if defined( REGION_AU915 )
// Verify radio frequency
if( VerifyRfFreq( rxParamSetupReq->Frequency ) == false )
{
status &= 0xFE; // Channel frequency KO
}
// Verify datarate
if( RegionCommonValueInRange( rxParamSetupReq->Datarate, AU915_RX_MIN_DATARATE, AU915_RX_MAX_DATARATE ) == false )
{
status &= 0xFD; // Datarate KO
}
if( ( rxParamSetupReq->Datarate == DR_7 ) ||
( rxParamSetupReq->Datarate > DR_13 ) )
{
status &= 0xFD; // Datarate KO
}
// Verify datarate offset
if( RegionCommonValueInRange( rxParamSetupReq->DrOffset, AU915_MIN_RX1_DR_OFFSET, AU915_MAX_RX1_DR_OFFSET ) == false )
{
status &= 0xFB; // Rx1DrOffset range KO
}
#endif /* REGION_AU915 */
return status;
}
int8_t RegionAU915NewChannelReq( NewChannelReqParams_t* newChannelReq )
{
// Do not accept the request
return -1;
}
int8_t RegionAU915TxParamSetupReq( TxParamSetupReqParams_t* txParamSetupReq )
{
// Accept the request
return 0;
}
int8_t RegionAU915DlChannelReq( DlChannelReqParams_t* dlChannelReq )
{
// Do not accept the request
return -1;
}
int8_t RegionAU915AlternateDr( int8_t currentDr, AlternateDrType_t type )
{
#if defined( REGION_AU915 )
// Alternates the data rate according to the channel sequence:
// Eight times a 125kHz DR_2 and then one 500kHz DR_6 channel
if( type == ALTERNATE_DR )
{
RegionNvmGroup1->JoinTrialsCounter++;
}
else
{
RegionNvmGroup1->JoinTrialsCounter--;
}
if( RegionNvmGroup1->JoinTrialsCounter % 9 == 0 )
{
// Use DR_6 every 9th times.
currentDr = DR_6;
}
else
{
currentDr = DR_2;
}
return currentDr;
#else
return -1;
#endif /* REGION_AU915 */
}
LoRaMacStatus_t RegionAU915NextChannel( NextChanParams_t* nextChanParams, uint8_t* channel, TimerTime_t* time, TimerTime_t* aggregatedTimeOff )
{
#if defined( REGION_AU915 )
uint8_t nbEnabledChannels = 0;
uint8_t nbRestrictedChannels = 0;
uint8_t enabledChannels[AU915_MAX_NB_CHANNELS] = { 0 };
RegionCommonIdentifyChannelsParam_t identifyChannelsParam;
RegionCommonCountNbOfEnabledChannelsParams_t countChannelsParams;
LoRaMacStatus_t status = LORAMAC_STATUS_NO_CHANNEL_FOUND;
// Count 125kHz channels
if( RegionCommonCountChannels( RegionNvmGroup1->ChannelsMaskRemaining, 0, 4 ) == 0 )
{ // Reactivate default channels
RegionCommonChanMaskCopy( RegionNvmGroup1->ChannelsMaskRemaining, RegionNvmGroup2->ChannelsMask, 4 );
RegionNvmGroup1->JoinChannelGroupsCurrentIndex = 0;
}
// Check other channels
if( nextChanParams->Datarate >= DR_6 )
{
if( ( RegionNvmGroup1->ChannelsMaskRemaining[4] & CHANNELS_MASK_500KHZ_MASK ) == 0 )
{
RegionNvmGroup1->ChannelsMaskRemaining[4] = RegionNvmGroup2->ChannelsMask[4];
}
}
// Search how many channels are enabled
countChannelsParams.Joined = nextChanParams->Joined;
countChannelsParams.Datarate = nextChanParams->Datarate;
countChannelsParams.ChannelsMask = RegionNvmGroup1->ChannelsMaskRemaining;
countChannelsParams.Channels = RegionNvmGroup2->Channels;
#if (defined( REGION_VERSION ) && ( REGION_VERSION == 0x01010003 ))
countChannelsParams.Bands = RegionNvmGroup1->Bands;
#elif (defined( REGION_VERSION ) && (( REGION_VERSION == 0x02010001 ) || ( REGION_VERSION == 0x02010003 )))
countChannelsParams.Bands = RegionBands;
#endif /* REGION_VERSION */
countChannelsParams.MaxNbChannels = AU915_MAX_NB_CHANNELS;
countChannelsParams.JoinChannels = NULL;
identifyChannelsParam.AggrTimeOff = nextChanParams->AggrTimeOff;
identifyChannelsParam.LastAggrTx = nextChanParams->LastAggrTx;
identifyChannelsParam.DutyCycleEnabled = nextChanParams->DutyCycleEnabled;
identifyChannelsParam.MaxBands = AU915_MAX_NB_BANDS;
identifyChannelsParam.ElapsedTimeSinceStartUp = nextChanParams->ElapsedTimeSinceStartUp;
identifyChannelsParam.LastTxIsJoinRequest = nextChanParams->LastTxIsJoinRequest;
identifyChannelsParam.ExpectedTimeOnAir = GetTimeOnAir( nextChanParams->Datarate, nextChanParams->PktLen );
identifyChannelsParam.CountNbOfEnabledChannelsParam = &countChannelsParams;
status = RegionCommonIdentifyChannels( &identifyChannelsParam, aggregatedTimeOff, enabledChannels,
&nbEnabledChannels, &nbRestrictedChannels, time );
if( status == LORAMAC_STATUS_OK )
{
if( nextChanParams->Joined == true )
{
// Choose randomly on of the remaining channels
*channel = enabledChannels[randr( 0, nbEnabledChannels - 1 )];
}
else
{
// For rapid network acquisition in mixed gateway channel plan environments, the device
// follow a random channel selection sequence. It probes alternating one out of a
// group of eight 125 kHz channels followed by probing one 500 kHz channel each pass.
// Each time a 125 kHz channel will be selected from another group.
// 125kHz Channels (0 - 63) DR2
if( nextChanParams->Datarate == DR_2 )
{
if( RegionBaseUSComputeNext125kHzJoinChannel( ( uint16_t* ) RegionNvmGroup1->ChannelsMaskRemaining,
&RegionNvmGroup1->JoinChannelGroupsCurrentIndex, channel ) == LORAMAC_STATUS_PARAMETER_INVALID )
{
return LORAMAC_STATUS_PARAMETER_INVALID;
}
}
// 500kHz Channels (64 - 71) DR6
else
{
// Choose the next available channel
uint8_t i = 0;
while( ( ( RegionNvmGroup1->ChannelsMaskRemaining[4] & CHANNELS_MASK_500KHZ_MASK ) & ( 1 << i ) ) == 0 )
{
i++;
}
*channel = 64 + i;
}
}
// Disable the channel in the mask
RegionCommonChanDisable( RegionNvmGroup1->ChannelsMaskRemaining, *channel, AU915_MAX_NB_CHANNELS );
}
return status;
#else
return LORAMAC_STATUS_NO_CHANNEL_FOUND;
#endif /* REGION_AU915 */
}
LoRaMacStatus_t RegionAU915ChannelAdd( ChannelAddParams_t* channelAdd )
{
return LORAMAC_STATUS_PARAMETER_INVALID;
}
bool RegionAU915ChannelsRemove( ChannelRemoveParams_t* channelRemove )
{
return LORAMAC_STATUS_PARAMETER_INVALID;
}
#if (defined( REGION_VERSION ) && ( REGION_VERSION == 0x01010003 ))
void RegionAU915SetContinuousWave( ContinuousWaveParams_t* continuousWave )
{
#if defined( REGION_AU915 )
int8_t txPowerLimited = RegionCommonLimitTxPower( continuousWave->TxPower, RegionNvmGroup1->Bands[RegionNvmGroup2->Channels[continuousWave->Channel].Band].TxMaxPower );
int8_t phyTxPower = 0;
uint32_t frequency = RegionNvmGroup2->Channels[continuousWave->Channel].Frequency;
// Calculate physical TX power
phyTxPower = RegionCommonComputeTxPower( txPowerLimited, continuousWave->MaxEirp, continuousWave->AntennaGain );
Radio.SetTxContinuousWave( frequency, phyTxPower, continuousWave->Timeout );
#endif /* REGION_AU915 */
}
#endif /* REGION_VERSION */
uint8_t RegionAU915ApplyDrOffset( uint8_t downlinkDwellTime, int8_t dr, int8_t drOffset )
{
#if defined( REGION_AU915 )
int8_t datarate = DatarateOffsetsAU915[dr][drOffset];
if( datarate < 0 )
{
if( downlinkDwellTime == 0 )
{
datarate = AU915_TX_MIN_DATARATE;
}
else
{
datarate = AU915_DWELL_LIMIT_DATARATE;
}
}
return datarate;
#else
return 0;
#endif /* REGION_AU915 */
}
void RegionAU915RxBeaconSetup( RxBeaconSetup_t* rxBeaconSetup, uint8_t* outDr )
{
#if defined( REGION_AU915 )
RegionCommonRxBeaconSetupParams_t regionCommonRxBeaconSetup;
regionCommonRxBeaconSetup.Datarates = DataratesAU915;
regionCommonRxBeaconSetup.Frequency = rxBeaconSetup->Frequency;
regionCommonRxBeaconSetup.BeaconSize = AU915_BEACON_SIZE;
regionCommonRxBeaconSetup.BeaconDatarate = AU915_BEACON_CHANNEL_DR;
regionCommonRxBeaconSetup.BeaconChannelBW = AU915_BEACON_CHANNEL_BW;
regionCommonRxBeaconSetup.RxTime = rxBeaconSetup->RxTime;
regionCommonRxBeaconSetup.SymbolTimeout = rxBeaconSetup->SymbolTimeout;
RegionCommonRxBeaconSetup( &regionCommonRxBeaconSetup );
// Store downlink datarate
*outDr = AU915_BEACON_CHANNEL_DR;
#endif /* REGION_AU915 */
}