STM32CubeWL/Middlewares/Third_Party/LoRaWAN/Mac/Region/RegionCommon.c

805 lines
29 KiB
C

/*!
* \file RegionCommon.c
*
* \brief LoRa MAC common region implementation
*
* \copyright Revised BSD License, see section \ref LICENSE.
*
* \code
* ______ _
* / _____) _ | |
* ( (____ _____ ____ _| |_ _____ ____| |__
* \____ \| ___ | (_ _) ___ |/ ___) _ \
* _____) ) ____| | | || |_| ____( (___| | | |
* (______/|_____)_|_|_| \__)_____)\____)_| |_|
* (C)2013-2017 Semtech
*
* ___ _____ _ ___ _ _____ ___ ___ ___ ___
* / __|_ _/_\ / __| |/ / __/ _ \| _ \/ __| __|
* \__ \ | |/ _ \ (__| ' <| _| (_) | / (__| _|
* |___/ |_/_/ \_\___|_|\_\_| \___/|_|_\\___|___|
* embedded.connectivity.solutions===============
*
* \endcode
*
* \author Miguel Luis ( Semtech )
*
* \author Gregory Cristian ( Semtech )
*
* \author Daniel Jaeckle ( STACKFORCE )
*/
/**
******************************************************************************
*
* Portions COPYRIGHT 2020 STMicroelectronics
*
* @file RegionCommon.c
* @author MCD Application Team
* @brief LoRa MAC common region implementation
******************************************************************************
*/
#include <math.h>
#include "radio.h"
#include "utilities.h"
#include "RegionCommon.h"
#include "systime.h"
#include "mw_log_conf.h"
#define BACKOFF_DC_1_HOUR 100
#define BACKOFF_DC_10_HOURS 1000
#define BACKOFF_DC_24_HOURS 10000
#define BACKOFF_DUTY_CYCLE_1_HOUR_IN_S 3600
#define BACKOFF_DUTY_CYCLE_10_HOURS_IN_S ( BACKOFF_DUTY_CYCLE_1_HOUR_IN_S + ( BACKOFF_DUTY_CYCLE_1_HOUR_IN_S * 10 ) )
#define BACKOFF_DUTY_CYCLE_24_HOURS_IN_S ( BACKOFF_DUTY_CYCLE_10_HOURS_IN_S + ( BACKOFF_DUTY_CYCLE_1_HOUR_IN_S * 24 ) )
#define BACKOFF_24_HOURS_IN_S ( BACKOFF_DUTY_CYCLE_1_HOUR_IN_S * 24 )
#ifndef DUTY_CYCLE_TIME_PERIOD
/*!
* Default duty cycle observation time period
*
* \remark The ETSI observation time period is 1 hour (3600000 ms) but, the implemented algorithm may violate the
* defined duty-cycle restrictions. In order to ensure that these restrictions never get violated we changed the
* default duty cycle observation time period to 1/2 hour (1800000 ms).
*/
#if (defined( REGION_VERSION ) && ( REGION_VERSION == 0x02010003 ))
#define DUTY_CYCLE_TIME_PERIOD 3600000
#else
#define DUTY_CYCLE_TIME_PERIOD 1800000
#endif
#endif
#ifndef DUTY_CYCLE_TIME_PERIOD_JOIN_BACKOFF_24H
/*!
* Time credits for the join backoff algorithm for the 24H period.
*/
#define DUTY_CYCLE_TIME_PERIOD_JOIN_BACKOFF_24H 870000
#endif
/*!
* \brief Returns `N / D` rounded to the smallest integer value greater than or equal to `N / D`
*
* \warning when `D == 0`, the result is undefined
*
* \remark `N` and `D` can be signed or unsigned
*
* \param [in] N the numerator, which can have any sign
* \param [in] D the denominator, which can have any sign
* \retval N / D with any fractional part rounded to the smallest integer value greater than or equal to `N / D`
*/
#define DIV_CEIL( N, D ) \
( \
( N > 0 ) ? \
( ( ( N ) + ( D ) - 1 ) / ( D ) ) : \
( ( N ) / ( D ) ) \
)
#ifdef MW_LOG_ENABLED
static const char *EventRXSlotStrings[] = { "1", "2", "C", "Multi_C", "P", "Multi_P" };
#endif
static uint16_t GetDutyCycle( Band_t* band, bool joined, SysTime_t elapsedTimeSinceStartup )
{
uint16_t dutyCycle = band->DCycle;
if( joined == false )
{
#if (defined( REGION_VERSION ) && ( REGION_VERSION == 0x02010003 ))
uint16_t joinDutyCycle = BACKOFF_DC_1_HOUR;
#else
uint16_t joinDutyCycle = BACKOFF_DC_24_HOURS;
if( elapsedTimeSinceStartup.Seconds < BACKOFF_DUTY_CYCLE_1_HOUR_IN_S )
{
joinDutyCycle = BACKOFF_DC_1_HOUR;
}
else if( elapsedTimeSinceStartup.Seconds < BACKOFF_DUTY_CYCLE_10_HOURS_IN_S )
{
joinDutyCycle = BACKOFF_DC_10_HOURS;
}
else
{
joinDutyCycle = BACKOFF_DC_24_HOURS;
}
#endif
// Take the most restrictive duty cycle
dutyCycle = MAX( dutyCycle, joinDutyCycle );
}
// Prevent value of 0
if( dutyCycle == 0 )
{
dutyCycle = 1;
}
return dutyCycle;
}
static uint16_t SetMaxTimeCredits( Band_t* band, bool joined, SysTime_t elapsedTimeSinceStartup,
bool dutyCycleEnabled, bool lastTxIsJoinRequest )
{
uint16_t dutyCycle = band->DCycle;
TimerTime_t maxCredits = DUTY_CYCLE_TIME_PERIOD;
// Get the band duty cycle. If not joined, the function either returns the join duty cycle
// or the band duty cycle, whichever is more restrictive.
dutyCycle = GetDutyCycle( band, joined, elapsedTimeSinceStartup );
if( joined == false )
{
#if (defined( REGION_VERSION ) && ( REGION_VERSION == 0x02010003 ))
if( elapsedTimeSinceStartup.Seconds < BACKOFF_DUTY_CYCLE_1_HOUR_IN_S )
{
maxCredits = DUTY_CYCLE_TIME_PERIOD;
}
else if( elapsedTimeSinceStartup.Seconds < BACKOFF_DUTY_CYCLE_10_HOURS_IN_S )
{
maxCredits = DUTY_CYCLE_TIME_PERIOD;
}
else
{
maxCredits = DUTY_CYCLE_TIME_PERIOD_JOIN_BACKOFF_24H;
}
#else
TimerTime_t elapsedTime = SysTimeToMs( elapsedTimeSinceStartup );
SysTime_t timeDiff = { 0 };
if( dutyCycle == BACKOFF_DC_1_HOUR )
{
maxCredits = DUTY_CYCLE_TIME_PERIOD;
band->LastMaxCreditAssignTime = elapsedTime;
}
else if( dutyCycle == BACKOFF_DC_10_HOURS )
{
maxCredits = DUTY_CYCLE_TIME_PERIOD * 10;
band->LastMaxCreditAssignTime = elapsedTime;
}
else
{
maxCredits = DUTY_CYCLE_TIME_PERIOD * 24;
}
timeDiff = SysTimeSub( elapsedTimeSinceStartup, SysTimeFromMs( band->LastMaxCreditAssignTime ) );
// Verify if we have to assign the maximum credits in cases
// of the preconditions have changed.
if( ( ( dutyCycleEnabled == false ) && ( lastTxIsJoinRequest == false ) ) ||
( band->MaxTimeCredits != maxCredits ) ||
( timeDiff.Seconds >= BACKOFF_24_HOURS_IN_S ) )
{
band->TimeCredits = maxCredits;
if( elapsedTimeSinceStartup.Seconds >= BACKOFF_DUTY_CYCLE_24_HOURS_IN_S )
{
timeDiff.Seconds = ( elapsedTimeSinceStartup.Seconds - BACKOFF_DUTY_CYCLE_24_HOURS_IN_S ) / BACKOFF_24_HOURS_IN_S;
timeDiff.Seconds *= BACKOFF_24_HOURS_IN_S;
timeDiff.Seconds += BACKOFF_DUTY_CYCLE_24_HOURS_IN_S;
timeDiff.SubSeconds = 0;
band->LastMaxCreditAssignTime = SysTimeToMs( timeDiff );
}
}
#endif
}
else
{
if( dutyCycleEnabled == false )
{
// Assign max credits when the duty cycle is disabled.
band->TimeCredits = maxCredits;
}
}
#if (defined( REGION_VERSION ) && (( REGION_VERSION == 0x01010003 ) || ( REGION_VERSION == 0x02010001 )))
// Assign the max credits if its the first time
if( band->LastBandUpdateTime == 0 )
{
band->TimeCredits = maxCredits;
}
#endif
// Setup the maximum allowed credits. We can assign them
// safely all the time.
band->MaxTimeCredits = maxCredits;
return dutyCycle;
}
#if (defined( REGION_VERSION ) && ( REGION_VERSION == 0x02010003 ))
static uint16_t UpdateTimeCredits( Band_t* band, bool joined, bool dutyCycleEnabled,
bool lastTxIsJoinRequest, SysTime_t elapsedTimeSinceStartup,
TimerTime_t currentTime, TimerTime_t lastBandUpdateTime )
{
uint16_t dutyCycle = SetMaxTimeCredits( band, joined, elapsedTimeSinceStartup,
dutyCycleEnabled, lastTxIsJoinRequest );
TimerTime_t observation = DUTY_CYCLE_TIME_PERIOD;
if( joined == false )
{
if( elapsedTimeSinceStartup.Seconds < BACKOFF_DUTY_CYCLE_1_HOUR_IN_S )
{
observation = BACKOFF_DUTY_CYCLE_1_HOUR_IN_S * 1000;
}
else if( elapsedTimeSinceStartup.Seconds < BACKOFF_DUTY_CYCLE_10_HOURS_IN_S )
{
observation = ( BACKOFF_DUTY_CYCLE_10_HOURS_IN_S * 1000 );
}
else
{
observation = ( BACKOFF_DUTY_CYCLE_24_HOURS_IN_S * 1000 );
}
}
// Apply new credits only if the observation period has been elapsed.
if( ( observation <= lastBandUpdateTime ) ||
( band->LastMaxCreditAssignTime != observation ) ||
( band->LastBandUpdateTime == 0 ) )
{
band->TimeCredits = band->MaxTimeCredits;
band->LastBandUpdateTime = currentTime;
band->LastMaxCreditAssignTime = observation;
}
return dutyCycle;
}
#else
static uint16_t UpdateTimeCredits( Band_t* band, bool joined, bool dutyCycleEnabled,
bool lastTxIsJoinRequest, SysTime_t elapsedTimeSinceStartup,
TimerTime_t currentTime )
{
uint16_t dutyCycle = SetMaxTimeCredits( band, joined, elapsedTimeSinceStartup,
dutyCycleEnabled, lastTxIsJoinRequest );
if( joined == true )
{
// Apply a sliding window for the duty cycle with collection and speding
// credits.
band->TimeCredits += TimerGetElapsedTime( band->LastBandUpdateTime );
}
// Limit band credits to maximum
if( band->TimeCredits > band->MaxTimeCredits )
{
band->TimeCredits = band->MaxTimeCredits;
}
// Synchronize update time
band->LastBandUpdateTime = currentTime;
return dutyCycle;
}
#endif
static uint8_t CountChannels( uint16_t mask, uint8_t nbBits )
{
uint8_t nbActiveBits = 0;
for( uint8_t j = 0; j < nbBits; j++ )
{
if( ( mask & ( 1 << j ) ) == ( 1 << j ) )
{
nbActiveBits++;
}
}
return nbActiveBits;
}
bool RegionCommonChanVerifyDr( uint8_t nbChannels, uint16_t* channelsMask, int8_t dr, int8_t minDr, int8_t maxDr, ChannelParams_t* channels )
{
if( RegionCommonValueInRange( dr, minDr, maxDr ) == 0 )
{
return false;
}
for( uint8_t i = 0, k = 0; i < nbChannels; i += 16, k++ )
{
for( uint8_t j = 0; j < 16; j++ )
{
if( ( ( channelsMask[k] & ( 1 << j ) ) != 0 ) )
{// Check datarate validity for enabled channels
if( RegionCommonValueInRange( dr, ( channels[i + j].DrRange.Fields.Min & 0x0F ),
( channels[i + j].DrRange.Fields.Max & 0x0F ) ) == 1 )
{
// At least 1 channel has been found we can return OK.
return true;
}
}
}
}
return false;
}
uint8_t RegionCommonValueInRange( int8_t value, int8_t min, int8_t max )
{
if( ( value >= min ) && ( value <= max ) )
{
return 1;
}
return 0;
}
bool RegionCommonChanDisable( uint16_t* channelsMask, uint8_t id, uint8_t maxChannels )
{
uint8_t index = id / 16;
if( ( index > ( maxChannels / 16 ) ) || ( id >= maxChannels ) )
{
return false;
}
// Deactivate channel
channelsMask[index] &= ~( 1 << ( id % 16 ) );
return true;
}
uint8_t RegionCommonCountChannels( uint16_t* channelsMask, uint8_t startIdx, uint8_t stopIdx )
{
uint8_t nbChannels = 0;
if( channelsMask == NULL )
{
return 0;
}
for( uint8_t i = startIdx; i < stopIdx; i++ )
{
nbChannels += CountChannels( channelsMask[i], 16 );
}
return nbChannels;
}
void RegionCommonChanMaskCopy( uint16_t* channelsMaskDest, uint16_t* channelsMaskSrc, uint8_t len )
{
if( ( channelsMaskDest != NULL ) && ( channelsMaskSrc != NULL ) )
{
for( uint8_t i = 0; i < len; i++ )
{
channelsMaskDest[i] = channelsMaskSrc[i];
}
}
}
void RegionCommonSetBandTxDone( Band_t* band, TimerTime_t lastTxAirTime, bool joined, SysTime_t elapsedTimeSinceStartup )
{
// Get the band duty cycle. If not joined, the function either returns the join duty cycle
// or the band duty cycle, whichever is more restrictive.
uint16_t dutyCycle = GetDutyCycle( band, joined, elapsedTimeSinceStartup );
// Reduce with transmission time
if( band->TimeCredits > ( lastTxAirTime * dutyCycle ) )
{
// Reduce time credits by the time of air
band->TimeCredits -= ( lastTxAirTime * dutyCycle );
}
else
{
band->TimeCredits = 0;
}
}
TimerTime_t RegionCommonUpdateBandTimeOff( bool joined, Band_t* bands,
uint8_t nbBands, bool dutyCycleEnabled,
bool lastTxIsJoinRequest, SysTime_t elapsedTimeSinceStartup,
TimerTime_t expectedTimeOnAir )
{
TimerTime_t minTimeToWait = TIMERTIME_T_MAX;
TimerTime_t currentTime = TimerGetCurrentTime( );
TimerTime_t creditCosts = 0;
uint16_t dutyCycle = 1;
uint8_t validBands = 0;
for( uint8_t i = 0; i < nbBands; i++ )
{
#if (defined( REGION_VERSION ) && ( REGION_VERSION == 0x02010003 ))
TimerTime_t elapsedTime = TimerGetElapsedTime( bands[i].LastBandUpdateTime );
// Synchronization of bands and credits
dutyCycle = UpdateTimeCredits( &bands[i], joined, dutyCycleEnabled,
lastTxIsJoinRequest, elapsedTimeSinceStartup,
currentTime, elapsedTime );
#else
// Synchronization of bands and credits
dutyCycle = UpdateTimeCredits( &bands[i], joined, dutyCycleEnabled,
lastTxIsJoinRequest, elapsedTimeSinceStartup,
currentTime );
#endif
// Calculate the credit costs for the next transmission
// with the duty cycle and the expected time on air
creditCosts = expectedTimeOnAir * dutyCycle;
// Check if the band is ready for transmission. Its ready,
// when the duty cycle is off, or the TimeCredits of the band
// is higher than the credit costs for the transmission.
if( ( bands[i].TimeCredits > creditCosts ) ||
( ( dutyCycleEnabled == false ) && ( joined == true ) ) )
{
bands[i].ReadyForTransmission = true;
// This band is a potential candidate for an
// upcoming transmission, so increase the counter.
validBands++;
}
else
{
// In this case, the band has not enough credits
// for the next transmission.
bands[i].ReadyForTransmission = false;
if( bands[i].MaxTimeCredits > creditCosts )
{
// The band can only be taken into account, if the maximum credits
// of the band are higher than the credit costs.
// We calculate the minTimeToWait among the bands which are not
// ready for transmission and which are potentially available
// for a transmission in the future.
#if (defined( REGION_VERSION ) && ( REGION_VERSION == 0x02010003 ))
TimerTime_t observationTimeDiff = 0;
if( bands[i].LastMaxCreditAssignTime >= elapsedTime )
{
observationTimeDiff = bands[i].LastMaxCreditAssignTime - elapsedTime;
}
minTimeToWait = MIN( minTimeToWait, observationTimeDiff );
#else
minTimeToWait = MIN( minTimeToWait, ( creditCosts - bands[i].TimeCredits ) );
#endif
// This band is a potential candidate for an
// upcoming transmission (even if its time credits are not enough
// at the moment), so increase the counter.
validBands++;
}
#if (defined( REGION_VERSION ) && (( REGION_VERSION == 0x01010003 ) || ( REGION_VERSION == 0x02010001 )))
// Apply a special calculation if the device is not joined.
if( joined == false )
{
SysTime_t backoffTimeRange = {
.Seconds = 0,
.SubSeconds = 0,
};
// Get the backoff time range based on the duty cycle definition
if( dutyCycle == BACKOFF_DC_1_HOUR )
{
backoffTimeRange.Seconds = BACKOFF_DUTY_CYCLE_1_HOUR_IN_S;
}
else if( dutyCycle == BACKOFF_DC_10_HOURS )
{
backoffTimeRange.Seconds = BACKOFF_DUTY_CYCLE_10_HOURS_IN_S;
}
else
{
backoffTimeRange.Seconds = BACKOFF_DUTY_CYCLE_24_HOURS_IN_S;
}
// Calculate the time to wait.
if( elapsedTimeSinceStartup.Seconds > BACKOFF_DUTY_CYCLE_24_HOURS_IN_S )
{
backoffTimeRange.Seconds += BACKOFF_24_HOURS_IN_S * ( ( ( elapsedTimeSinceStartup.Seconds - BACKOFF_DUTY_CYCLE_24_HOURS_IN_S ) / BACKOFF_24_HOURS_IN_S ) + 1 );
}
// Calculate the time difference between now and the next range
backoffTimeRange = SysTimeSub( backoffTimeRange, elapsedTimeSinceStartup );
minTimeToWait = SysTimeToMs( backoffTimeRange );
}
#endif
}
}
if( validBands == 0 )
{
// There is no valid band available to handle a transmission
// in the given DUTY_CYCLE_TIME_PERIOD.
return TIMERTIME_T_MAX;
}
return minTimeToWait;
}
uint8_t RegionCommonParseLinkAdrReq( uint8_t* payload, RegionCommonLinkAdrParams_t* linkAdrParams )
{
uint8_t retIndex = 0;
if( payload[0] == SRV_MAC_LINK_ADR_REQ )
{
// Parse datarate and tx power
linkAdrParams->Datarate = payload[1];
linkAdrParams->TxPower = linkAdrParams->Datarate & 0x0F;
linkAdrParams->Datarate = ( linkAdrParams->Datarate >> 4 ) & 0x0F;
// Parse ChMask
linkAdrParams->ChMask = ( uint16_t )payload[2];
linkAdrParams->ChMask |= ( uint16_t )payload[3] << 8;
// Parse ChMaskCtrl and nbRep
linkAdrParams->NbRep = payload[4];
linkAdrParams->ChMaskCtrl = ( linkAdrParams->NbRep >> 4 ) & 0x07;
linkAdrParams->NbRep &= 0x0F;
// LinkAdrReq has 4 bytes length + 1 byte CMD
retIndex = 5;
}
return retIndex;
}
uint8_t RegionCommonLinkAdrReqVerifyParams( RegionCommonLinkAdrReqVerifyParams_t* verifyParams, int8_t* dr, int8_t* txPow, uint8_t* nbRep )
{
uint8_t status = verifyParams->Status;
int8_t datarate = verifyParams->Datarate;
int8_t txPower = verifyParams->TxPower;
int8_t nbRepetitions = verifyParams->NbRep;
// Handle the case when ADR is off.
if( verifyParams->AdrEnabled == false )
{
// When ADR is off, we are allowed to change the channels mask
nbRepetitions = verifyParams->CurrentNbRep;
datarate = verifyParams->CurrentDatarate;
txPower = verifyParams->CurrentTxPower;
}
if( status != 0 )
{
// Verify datarate. The variable phyParam. Value contains the minimum allowed datarate.
if( datarate == 0x0F )
{ // 0xF means that the device MUST ignore that field, and keep the current parameter value.
datarate = verifyParams->CurrentDatarate;
}
else if( RegionCommonChanVerifyDr( verifyParams->NbChannels, verifyParams->ChannelsMask, datarate,
verifyParams->MinDatarate, verifyParams->MaxDatarate, verifyParams->Channels ) == false )
{
status &= 0xFD; // Datarate KO
}
// Verify tx power
if( txPower == 0x0F )
{ // 0xF means that the device MUST ignore that field, and keep the current parameter value.
txPower = verifyParams->CurrentTxPower;
}
else if( RegionCommonValueInRange( txPower, verifyParams->MaxTxPower, verifyParams->MinTxPower ) == 0 )
{
// Verify if the maximum TX power is exceeded
if( verifyParams->MaxTxPower > txPower )
{ // Apply maximum TX power. Accept TX power.
txPower = verifyParams->MaxTxPower;
}
else
{
status &= 0xFB; // TxPower KO
}
}
}
// If the status is ok, verify the NbRep
if( status == 0x07 )
{
if( nbRepetitions == 0 )
{ // Set nbRep to the default value of 1.
nbRepetitions = 1;
}
}
// Apply changes
*dr = datarate;
*txPow = txPower;
*nbRep = nbRepetitions;
return status;
}
uint32_t RegionCommonComputeSymbolTimeLoRa( uint8_t phyDr, uint32_t bandwidthInHz )
{
return ( 1 << phyDr ) * 1000000 / bandwidthInHz;
}
uint32_t RegionCommonComputeSymbolTimeFsk( uint8_t phyDrInKbps )
{
return 8000 / ( uint32_t )phyDrInKbps; // 1 symbol equals 1 byte
}
void RegionCommonComputeRxWindowParameters( uint32_t tSymbolInUs, uint8_t minRxSymbols, uint32_t rxErrorInMs, uint32_t wakeUpTimeInMs, uint32_t* windowTimeoutInSymbols, int32_t* windowOffsetInMs )
{
*windowTimeoutInSymbols = MAX( DIV_CEIL( ( ( 2 * minRxSymbols - 8 ) * tSymbolInUs + 2 * ( rxErrorInMs * 1000 ) ), tSymbolInUs ), minRxSymbols ); // Computed number of symbols
*windowOffsetInMs = ( int32_t )DIV_CEIL( ( int32_t )( 4 * tSymbolInUs ) -
( int32_t )DIV_CEIL( ( *windowTimeoutInSymbols * tSymbolInUs ), 2 ) -
( int32_t )( wakeUpTimeInMs * 1000 ), 1000 );
}
int8_t RegionCommonComputeTxPower( int8_t txPowerIndex, float maxEirp, float antennaGain )
{
int8_t phyTxPower = 0;
phyTxPower = ( int8_t )floor( ( maxEirp - ( txPowerIndex * 2U ) ) - antennaGain );
return phyTxPower;
}
void RegionCommonRxBeaconSetup( RegionCommonRxBeaconSetupParams_t* rxBeaconSetupParams )
{
bool rxContinuous = true;
uint8_t datarate;
// Set the radio into sleep mode
Radio.Sleep( );
// Setup frequency and payload length
Radio.SetChannel( rxBeaconSetupParams->Frequency );
Radio.SetMaxPayloadLength( MODEM_LORA, rxBeaconSetupParams->BeaconSize );
// Check the RX continuous mode
if( rxBeaconSetupParams->RxTime != 0 )
{
rxContinuous = false;
}
// Get region specific datarate
datarate = rxBeaconSetupParams->Datarates[rxBeaconSetupParams->BeaconDatarate];
// Setup radio
Radio.SetRxConfig( MODEM_LORA, rxBeaconSetupParams->BeaconChannelBW, datarate,
1, 0, 10, rxBeaconSetupParams->SymbolTimeout, true, rxBeaconSetupParams->BeaconSize, false, 0, 0, false, rxContinuous );
Radio.Rx( rxBeaconSetupParams->RxTime );
MW_LOG(TS_ON, VLEVEL_M, "RX_BC on freq %u Hz at DR %d\r\n", (unsigned)rxBeaconSetupParams->Frequency, rxBeaconSetupParams->BeaconDatarate );
}
void RegionCommonCountNbOfEnabledChannels( RegionCommonCountNbOfEnabledChannelsParams_t* countNbOfEnabledChannelsParams,
uint8_t* enabledChannels, uint8_t* nbEnabledChannels, uint8_t* nbRestrictedChannels )
{
uint8_t nbChannelCount = 0;
uint8_t nbRestrictedChannelsCount = 0;
for( uint8_t i = 0, k = 0; i < countNbOfEnabledChannelsParams->MaxNbChannels; i += 16, k++ )
{
for( uint8_t j = 0; j < 16; j++ )
{
if( ( countNbOfEnabledChannelsParams->ChannelsMask[k] & ( 1 << j ) ) != 0 )
{
if( countNbOfEnabledChannelsParams->Channels[i + j].Frequency == 0 )
{ // Check if the channel is enabled
continue;
}
if( ( countNbOfEnabledChannelsParams->Joined == false ) &&
( countNbOfEnabledChannelsParams->JoinChannels != NULL ) )
{
if( ( countNbOfEnabledChannelsParams->JoinChannels[k] & ( 1 << j ) ) == 0 )
{
continue;
}
}
if( RegionCommonValueInRange( countNbOfEnabledChannelsParams->Datarate,
countNbOfEnabledChannelsParams->Channels[i + j].DrRange.Fields.Min,
countNbOfEnabledChannelsParams->Channels[i + j].DrRange.Fields.Max ) == false )
{ // Check if the current channel selection supports the given datarate
continue;
}
if( countNbOfEnabledChannelsParams->Bands[countNbOfEnabledChannelsParams->Channels[i + j].Band].ReadyForTransmission == false )
{ // Check if the band is available for transmission
nbRestrictedChannelsCount++;
continue;
}
enabledChannels[nbChannelCount++] = i + j;
}
}
}
*nbEnabledChannels = nbChannelCount;
*nbRestrictedChannels = nbRestrictedChannelsCount;
}
LoRaMacStatus_t RegionCommonIdentifyChannels( RegionCommonIdentifyChannelsParam_t* identifyChannelsParam,
TimerTime_t* aggregatedTimeOff, uint8_t* enabledChannels,
uint8_t* nbEnabledChannels, uint8_t* nbRestrictedChannels,
TimerTime_t* nextTxDelay )
{
TimerTime_t elapsed = TimerGetElapsedTime( identifyChannelsParam->LastAggrTx );
*nextTxDelay = identifyChannelsParam->AggrTimeOff - elapsed;
*nbRestrictedChannels = 1;
*nbEnabledChannels = 0;
if( ( identifyChannelsParam->LastAggrTx == 0 ) ||
( identifyChannelsParam->AggrTimeOff <= elapsed ) )
{
// Reset Aggregated time off
*aggregatedTimeOff = 0;
// Update bands Time OFF
*nextTxDelay = RegionCommonUpdateBandTimeOff( identifyChannelsParam->CountNbOfEnabledChannelsParam->Joined,
identifyChannelsParam->CountNbOfEnabledChannelsParam->Bands,
identifyChannelsParam->MaxBands,
identifyChannelsParam->DutyCycleEnabled,
identifyChannelsParam->LastTxIsJoinRequest,
identifyChannelsParam->ElapsedTimeSinceStartUp,
identifyChannelsParam->ExpectedTimeOnAir );
RegionCommonCountNbOfEnabledChannels( identifyChannelsParam->CountNbOfEnabledChannelsParam, enabledChannels,
nbEnabledChannels, nbRestrictedChannels );
}
if( *nbEnabledChannels > 0 )
{
*nextTxDelay = 0;
return LORAMAC_STATUS_OK;
}
else if( *nbRestrictedChannels > 0 )
{
return LORAMAC_STATUS_DUTYCYCLE_RESTRICTED;
}
else
{
return LORAMAC_STATUS_NO_CHANNEL_FOUND;
}
}
int8_t RegionCommonGetNextLowerTxDr( RegionCommonGetNextLowerTxDrParams_t *params )
{
int8_t drLocal = params->CurrentDr;
if( params->CurrentDr == params->MinDr )
{
return params->MinDr;
}
else
{
do
{
drLocal = ( drLocal - 1 );
} while( ( drLocal != params->MinDr ) &&
( RegionCommonChanVerifyDr( params->NbChannels, params->ChannelsMask, drLocal, params->MinDr, params->MaxDr, params->Channels ) == false ) );
return drLocal;
}
}
int8_t RegionCommonLimitTxPower( int8_t txPower, int8_t maxBandTxPower )
{
// Limit tx power to the band max
return MAX( txPower, maxBandTxPower );
}
uint32_t RegionCommonGetBandwidth( uint32_t drIndex, const uint32_t* bandwidths )
{
switch( bandwidths[drIndex] )
{
default:
case 125000:
return 0;
case 250000:
return 1;
case 500000:
return 2;
}
}
void RegionCommonRxConfigPrint(LoRaMacRxSlot_t rxSlot, uint32_t frequency, int8_t dr)
{
if ( rxSlot < RX_SLOT_NONE )
{
MW_LOG(TS_ON, VLEVEL_M, "RX_%s on freq %u Hz at DR %d\r\n", EventRXSlotStrings[rxSlot], (unsigned)frequency, dr );
}
else
{
MW_LOG(TS_ON, VLEVEL_M, "RX on freq %u Hz at DR %d\r\n", (unsigned)frequency, dr );
}
}
void RegionCommonTxConfigPrint(uint32_t frequency, int8_t dr)
{
MW_LOG(TS_ON, VLEVEL_M, "TX on freq %u Hz at DR %d\r\n", (unsigned)frequency, dr );
}