STM32CubeWL/Middlewares/Third_Party/SubGHz_Phy/stm32_radio_driver/radio.c

1981 lines
69 KiB
C
Raw Blame History

/*!
* \file radio.c
*
* \brief Radio driver API definition
*
* \copyright Revised BSD License, see section \ref LICENSE.
*
* \code
* ______ _
* / _____) _ | |
* ( (____ _____ ____ _| |_ _____ ____| |__
* \____ \| ___ | (_ _) ___ |/ ___) _ \
* _____) ) ____| | | || |_| ____( (___| | | |
* (______/|_____)_|_|_| \__)_____)\____)_| |_|
* (C)2013-2017 Semtech
*
* \endcode
*
* \author Miguel Luis ( Semtech )
*
* \author Gregory Cristian ( Semtech )
*/
/**
******************************************************************************
*
* Portions COPYRIGHT 2020 STMicroelectronics
*
* @file radio.c
* @author MCD Application Team
* @brief radio API definition
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include <math.h>
#include "timer.h"
#include "radio.h"
#include "radio_driver.h"
#include "radio_conf.h"
#include "mw_log_conf.h"
/* Private typedef -----------------------------------------------------------*/
/*!
* Radio hardware and global parameters
*/
typedef struct SubgRf_s
{
RadioModems_t Modem;
bool RxContinuous;
uint32_t TxTimeout;
uint32_t RxTimeout;
struct
{
bool Previous;
bool Current;
} PublicNetwork;
PacketParams_t PacketParams;
PacketStatus_t PacketStatus;
ModulationParams_t ModulationParams;
RadioIrqMasks_t RadioIrq;
uint8_t AntSwitchPaSelect;
} SubgRf_t;
/*!
* FSK bandwidth definition
*/
typedef struct
{
uint32_t bandwidth;
uint8_t RegValue;
} FskBandwidth_t;
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
#define RADIO_BIT_MASK(__n) (~(1<<__n))
/**
* \brief Calculates ceiling( X / N )
*
* \param [IN] X numerator
* \param [IN] N denominator
*
*/
#ifndef DIVC
#define DIVC( X, N ) ( ( ( X ) + ( N ) - 1 ) / ( N ) )
#endif
/* Private function prototypes -----------------------------------------------*/
/*!
* \brief Returns the known FSK bandwidth registers value
*
* \param [IN] bandwidth Bandwidth value in Hz
* \retval regValue Bandwidth register value.
*/
static uint8_t RadioGetFskBandwidthRegValue( uint32_t bandwidth );
/*!
* \brief Initializes the radio
*
* \param [IN] events Structure containing the driver callback functions
*/
static void RadioInit( RadioEvents_t *events );
/*!
* Return current radio status
*
* \param status Radio status.[RF_IDLE, RF_RX_RUNNING, RF_TX_RUNNING]
*/
static RadioState_t RadioGetStatus( void );
/*!
* \brief Configures the radio with the given modem
*
* \param [IN] modem Modem to be used [0: FSK, 1: LoRa]
*/
static void RadioSetModem( RadioModems_t modem );
/*!
* \brief Sets the channel frequency
*
* \param [IN] freq Channel RF frequency
*/
static void RadioSetChannel( uint32_t freq );
/*!
* \brief Checks if the channel is free for the given time
*
* \remark The FSK modem is always used for this task as we can select the Rx bandwidth at will.
*
* \param [IN] freq Channel RF frequency in Hertz
* \param [IN] rxBandwidth Rx bandwidth in Hertz
* \param [IN] rssiThresh RSSI threshold in dBm
* \param [IN] maxCarrierSenseTime Max time in milliseconds while the RSSI is measured
*
* \retval isFree [true: Channel is free, false: Channel is not free]
*/
static bool RadioIsChannelFree( uint32_t freq, uint32_t rxBandwidth, int16_t rssiThresh, uint32_t maxCarrierSenseTime );
/*!
* \brief Generates a 32 bits random value based on the RSSI readings
*
* \remark This function sets the radio in LoRa modem mode and disables
* all interrupts.
* After calling this function either Radio.SetRxConfig or
* Radio.SetTxConfig functions must be called.
*
* \retval randomValue 32 bits random value
*/
static uint32_t RadioRandom( void );
/*!
* \brief Sets the reception parameters
*
* \param [IN] modem Radio modem to be used [0: FSK, 1: LoRa]
* \param [IN] bandwidth Sets the bandwidth
* FSK : >= 2600 and <= 250000 Hz
* LoRa: [0: 125 kHz, 1: 250 kHz,
* 2: 500 kHz, 3: Reserved]
* \param [IN] datarate Sets the Datarate
* FSK : 600..300000 bits/s
* LoRa: [6: 64, 7: 128, 8: 256, 9: 512,
* 10: 1024, 11: 2048, 12: 4096 chips]
* \param [IN] coderate Sets the coding rate (LoRa only)
* FSK : N/A ( set to 0 )
* LoRa: [1: 4/5, 2: 4/6, 3: 4/7, 4: 4/8]
* \param [IN] bandwidthAfc Sets the AFC Bandwidth (FSK only)
* FSK : >= 2600 and <= 250000 Hz
* LoRa: N/A ( set to 0 )
* \param [IN] preambleLen Sets the Preamble length
* FSK : Number of bytes
* LoRa: Length in symbols (the hardware adds 4 more symbols)
* \param [IN] symbTimeout Sets the RxSingle timeout value
* FSK : timeout in number of bytes
* LoRa: timeout in symbols
* \param [IN] fixLen Fixed length packets [0: variable, 1: fixed]
* \param [IN] payloadLen Sets payload length when fixed length is used
* \param [IN] crcOn Enables/Disables the CRC [0: OFF, 1: ON]
* \param [IN] FreqHopOn Enables disables the intra-packet frequency hopping
* FSK : N/A ( set to 0 )
* LoRa: [0: OFF, 1: ON]
* \param [IN] HopPeriod Number of symbols between each hop
* FSK : N/A ( set to 0 )
* LoRa: Number of symbols
* \param [IN] iqInverted Inverts IQ signals (LoRa only)
* FSK : N/A ( set to 0 )
* LoRa: [0: not inverted, 1: inverted]
* \param [IN] rxContinuous Sets the reception in continuous mode
* [false: single mode, true: continuous mode]
*/
static void RadioSetRxConfig( RadioModems_t modem, uint32_t bandwidth,
uint32_t datarate, uint8_t coderate,
uint32_t bandwidthAfc, uint16_t preambleLen,
uint16_t symbTimeout, bool fixLen,
uint8_t payloadLen,
bool crcOn, bool FreqHopOn, uint8_t HopPeriod,
bool iqInverted, bool rxContinuous );
/*!
* \brief Sets the transmission parameters
*
* \param [IN] modem Radio modem to be used [0: FSK, 1: LoRa]
* \param [IN] power Sets the output power [dBm]
* \param [IN] fdev Sets the frequency deviation (FSK only)
* FSK : [Hz]
* LoRa: 0
* \param [IN] bandwidth Sets the bandwidth (LoRa only)
* FSK : 0
* LoRa: [0: 125 kHz, 1: 250 kHz,
* 2: 500 kHz, 3: Reserved]
* \param [IN] datarate Sets the Datarate
* FSK : 600..300000 bits/s
* LoRa: [6: 64, 7: 128, 8: 256, 9: 512,
* 10: 1024, 11: 2048, 12: 4096 chips]
* \param [IN] coderate Sets the coding rate (LoRa only)
* FSK : N/A ( set to 0 )
* LoRa: [1: 4/5, 2: 4/6, 3: 4/7, 4: 4/8]
* \param [IN] preambleLen Sets the preamble length
* FSK : Number of bytes
* LoRa: Length in symbols (the hardware adds 4 more symbols)
* \param [IN] fixLen Fixed length packets [0: variable, 1: fixed]
* \param [IN] crcOn Enables disables the CRC [0: OFF, 1: ON]
* \param [IN] FreqHopOn Enables disables the intra-packet frequency hopping
* FSK : N/A ( set to 0 )
* LoRa: [0: OFF, 1: ON]
* \param [IN] HopPeriod Number of symbols between each hop
* FSK : N/A ( set to 0 )
* LoRa: Number of symbols
* \param [IN] iqInverted Inverts IQ signals (LoRa only)
* FSK : N/A ( set to 0 )
* LoRa: [0: not inverted, 1: inverted]
* \param [IN] timeout Transmission timeout [ms]
*/
static void RadioSetTxConfig( RadioModems_t modem, int8_t power, uint32_t fdev,
uint32_t bandwidth, uint32_t datarate,
uint8_t coderate, uint16_t preambleLen,
bool fixLen, bool crcOn, bool FreqHopOn,
uint8_t HopPeriod, bool iqInverted, uint32_t timeout );
/*!
* \brief Checks if the given RF frequency is supported by the hardware
*
* \param [IN] frequency RF frequency to be checked
* \retval isSupported [true: supported, false: unsupported]
*/
static bool RadioCheckRfFrequency( uint32_t frequency );
/*!
* \brief Convert the bandwitdh enum to Hz value
*
* \param [IN] bw RF frequency to be checked
* \retval bandwidthInHz bandwidth value in Hertz
*/
static uint32_t RadioGetLoRaBandwidthInHz( RadioLoRaBandwidths_t bw );
/*!
* \brief Computes the time on air GSFK numerator
*
* \param [IN] datarate Sets the Datarate
* FSK : 600..300000 bits/s
* LoRa: [6: 64, 7: 128, 8: 256, 9: 512,
* 10: 1024, 11: 2048, 12: 4096 chips]
* \param [IN] coderate Sets the coding rate (LoRa only)
* FSK : N/A ( set to 0 )
* LoRa: [1: 4/5, 2: 4/6, 3: 4/7, 4: 4/8]
* \param [IN] preambleLen Sets the Preamble length
* FSK : Number of bytes
* LoRa: Length in symbols (the hardware adds 4 more symbols)
* \param [IN] fixLen Fixed length packets [0: variable, 1: fixed]
* \param [IN] payloadLen Sets payload length when fixed length is used
* \param [IN] crcOn Enables/Disables the CRC [0: OFF, 1: ON]
* \retval numerator time on air GFSK numerator
*/
static uint32_t RadioGetGfskTimeOnAirNumerator( uint32_t datarate, uint8_t coderate,
uint16_t preambleLen, bool fixLen, uint8_t payloadLen,
bool crcOn );
/*!
* \brief Computes the time on air LoRa numerator
*
* \param [IN] bandwidth Sets the bandwidth
* FSK : >= 2600 and <= 250000 Hz
* LoRa: [0: 125 kHz, 1: 250 kHz,
* 2: 500 kHz, 3: Reserved]
* \param [IN] datarate Sets the Datarate
* FSK : 600..300000 bits/s
* LoRa: [6: 64, 7: 128, 8: 256, 9: 512,
* 10: 1024, 11: 2048, 12: 4096 chips]
* \param [IN] coderate Sets the coding rate (LoRa only)
* FSK : N/A ( set to 0 )
* LoRa: [1: 4/5, 2: 4/6, 3: 4/7, 4: 4/8]
* \param [IN] preambleLen Sets the Preamble length
* FSK : Number of bytes
* LoRa: Length in symbols (the hardware adds 4 more symbols)
* \param [IN] fixLen Fixed length packets [0: variable, 1: fixed]
* \param [IN] payloadLen Sets payload length when fixed length is used
* \param [IN] crcOn Enables/Disables the CRC [0: OFF, 1: ON]
* \retval numerator time on air LoRa numerator
*/
static uint32_t RadioGetLoRaTimeOnAirNumerator( uint32_t bandwidth,
uint32_t datarate, uint8_t coderate,
uint16_t preambleLen, bool fixLen, uint8_t payloadLen,
bool crcOn );
/*!
* \brief Computes the packet time on air in ms for the given payload
*
* \Remark Can only be called once SetRxConfig or SetTxConfig have been called
*
* \param [IN] modem Radio modem to be used [0: FSK, 1: LoRa]
* \param [IN] bandwidth Sets the bandwidth
* FSK : >= 2600 and <= 250000 Hz
* LoRa: [0: 125 kHz, 1: 250 kHz,
* 2: 500 kHz, 3: Reserved]
* \param [IN] datarate Sets the Datarate
* FSK : 600..300000 bits/s
* LoRa: [6: 64, 7: 128, 8: 256, 9: 512,
* 10: 1024, 11: 2048, 12: 4096 chips]
* \param [IN] coderate Sets the coding rate (LoRa only)
* FSK : N/A ( set to 0 )
* LoRa: [1: 4/5, 2: 4/6, 3: 4/7, 4: 4/8]
* \param [IN] preambleLen Sets the Preamble length
* FSK : Number of bytes
* LoRa: Length in symbols (the hardware adds 4 more symbols)
* \param [IN] fixLen Fixed length packets [0: variable, 1: fixed]
* \param [IN] payloadLen Sets payload length when fixed length is used
* \param [IN] crcOn Enables/Disables the CRC [0: OFF, 1: ON]
*
* \retval airTime Computed airTime (ms) for the given packet payload length
*/
static uint32_t RadioTimeOnAir( RadioModems_t modem, uint32_t bandwidth,
uint32_t datarate, uint8_t coderate,
uint16_t preambleLen, bool fixLen, uint8_t payloadLen,
bool crcOn );
/*!
* \brief Sends the buffer of size. Prepares the packet to be sent and sets
* the radio in transmission
*
* \param [IN]: buffer Buffer pointer
* \param [IN]: size Buffer size
*/
static void RadioSend( uint8_t *buffer, uint8_t size );
/*!
* \brief Sets the radio in sleep mode
*/
static void RadioSleep( void );
/*!
* \brief Sets the radio in standby mode
*/
static void RadioStandby( void );
/*!
* \brief Sets the radio in reception mode for the given time
* \param [IN] timeout Reception timeout [ms]
* [0: continuous, others timeout]
*/
static void RadioRx( uint32_t timeout );
/*!
* \brief Start a Channel Activity Detection
*/
static void RadioStartCad( void );
/*!
* \brief Sets the radio in continuous wave transmission mode
*
* \param [IN]: freq Channel RF frequency
* \param [IN]: power Sets the output power [dBm]
* \param [IN]: time Transmission mode timeout [s]
*/
static void RadioSetTxContinuousWave( uint32_t freq, int8_t power, uint16_t time );
/*!
* \brief Reads the current RSSI value
*
* \retval rssiValue Current RSSI value in [dBm]
*/
static int16_t RadioRssi( RadioModems_t modem );
/*!
* \brief Writes the radio register at the specified address
*
* \param [IN]: addr Register address
* \param [IN]: data New register value
*/
static void RadioWrite( uint16_t addr, uint8_t data );
/*!
* \brief Reads the radio register at the specified address
*
* \param [IN]: addr Register address
* \retval data Register value
*/
static uint8_t RadioRead( uint16_t addr );
/*!
* \brief Writes multiple radio registers starting at address
*
* \param [IN] addr First Radio register address
* \param [IN] buffer Buffer containing the new register's values
* \param [IN] size Number of registers to be written
*/
static void RadioWriteRegisters( uint16_t addr, uint8_t *buffer, uint8_t size );
/*!
* \brief Reads multiple radio registers starting at address
*
* \param [IN] addr First Radio register address
* \param [OUT] buffer Buffer where to copy the registers data
* \param [IN] size Number of registers to be read
*/
static void RadioReadRegisters( uint16_t addr, uint8_t *buffer, uint8_t size );
/*!
* \brief Sets the maximum payload length.
*
* \param [IN] modem Radio modem to be used [0: FSK, 1: LoRa]
* \param [IN] max Maximum payload length in bytes
*/
static void RadioSetMaxPayloadLength( RadioModems_t modem, uint8_t max );
/*!
* \brief Sets the network to public or private. Updates the sync byte.
*
* \remark Applies to LoRa modem only
*
* \param [IN] enable if true, it enables a public network
*/
static void RadioSetPublicNetwork( bool enable );
/*!
* \brief Gets the time required for the board plus radio to get out of sleep.[ms]
*
* \retval time Radio plus board wakeup time in ms.
*/
static uint32_t RadioGetWakeupTime( void );
/*!
* \brief Process radio irq
*/
static void RadioIrqProcess( void );
/*!
* \brief Sets the radio in reception mode with Max LNA gain for the given time
* \param [IN] timeout Reception timeout [ms]
* [0: continuous, others timeout]
*/
static void RadioRxBoosted( uint32_t timeout );
/*!
* \brief Sets the Rx duty cycle management parameters
*
* \param [in] rxTime Structure describing reception timeout value
* \param [in] sleepTime Structure describing sleep timeout value
*/
static void RadioSetRxDutyCycle( uint32_t rxTime, uint32_t sleepTime );
/*!
* \brief DIO 0 IRQ callback
*/
static void RadioOnDioIrq( RadioIrqMasks_t radioIrq );
/*!
* \brief Tx timeout timer callback
*/
static void RadioOnTxTimeoutIrq( void * context );
/*!
* \brief Rx timeout timer callback
*/
static void RadioOnRxTimeoutIrq( void * context );
/*!
* @brief D-BPSK to BPSK
*
* @param [out] outBuffer buffer with frame encoded
* @param [in] inBuffer buffer with frame to encode
* @param [in] size size of the payload to encode
*/
static void payload_integration( uint8_t *outBuffer, uint8_t *inBuffer, uint8_t size);
/*!
* \brief Set Tx PRBS modulated wave
* \retval none
*/
static void RadioTxPrbs( void );
/*!
* \brief Set Tx continuous wave
* \retval none
*/
static void RadioTxCw( int8_t power );
/*!
* \brief Sets the reception parameters
*
* \param [IN] modem Radio modem to be used [GENERIC_FSK or GENERIC_FSK]
* \param [IN] config configuration of receiver
* fsk field to be used if modem =GENERIC_FSK
* lora field to be used if modem =GENERIC_LORA
* \param [IN] rxContinuous Sets the reception in continuous mode
* [0: single mode, otherwise continuous mode]
* \param [IN] symbTimeout Sets the RxSingle timeout value
* FSK : timeout in number of bytes
* LoRa: timeout in symbols
* \return 0 when no parameters error, -1 otherwise
*/
static int32_t RadioSetRxGenericConfig(GenericModems_t modem, RxConfigGeneric_t* config,
uint32_t rxContinuous, uint32_t symbTimeout);
/*!
* \brief Sets the transmission parameters
*
* \param [IN] modem Radio modem to be used [GENERIC_FSK or GENERIC_FSK or GENERIC_BPSK]
* \param [IN] config configuration of receiver
* fsk field to be used if modem =GENERIC_FSK
* lora field to be used if modem =GENERIC_LORA
bpsk field to be used if modem =GENERIC_BPSK
* \param [IN] power Sets the output power [dBm]
* \param [IN] timeout Transmission timeout [ms]
* \return 0 when no parameters error, -1 otherwise
*/
static int32_t RadioSetTxGenericConfig(GenericModems_t modem, TxConfigGeneric_t *config,
int8_t power, uint32_t timeout);
/* Private variables ---------------------------------------------------------*/
/*!
* Radio driver structure initialization
*/
const struct Radio_s Radio =
{
RadioInit,
RadioGetStatus,
RadioSetModem,
RadioSetChannel,
RadioIsChannelFree,
RadioRandom,
RadioSetRxConfig,
RadioSetTxConfig,
RadioCheckRfFrequency,
RadioTimeOnAir,
RadioSend,
RadioSleep,
RadioStandby,
RadioRx,
RadioStartCad,
RadioSetTxContinuousWave,
RadioRssi,
RadioWrite,
RadioRead,
RadioWriteRegisters,
RadioReadRegisters,
RadioSetMaxPayloadLength,
RadioSetPublicNetwork,
RadioGetWakeupTime,
RadioIrqProcess,
RadioRxBoosted,
RadioSetRxDutyCycle,
RadioTxPrbs,
RadioTxCw,
RadioSetRxGenericConfig,
RadioSetTxGenericConfig,
};
/*!
* Precomputed FSK bandwidth registers values
*/
const FskBandwidth_t FskBandwidths[] =
{
{ 4800 , 0x1F },
{ 5800 , 0x17 },
{ 7300 , 0x0F },
{ 9700 , 0x1E },
{ 11700 , 0x16 },
{ 14600 , 0x0E },
{ 19500 , 0x1D },
{ 23400 , 0x15 },
{ 29300 , 0x0D },
{ 39000 , 0x1C },
{ 46900 , 0x14 },
{ 58600 , 0x0C },
{ 78200 , 0x1B },
{ 93800 , 0x13 },
{ 117300, 0x0B },
{ 156200, 0x1A },
{ 187200, 0x12 },
{ 234300, 0x0A },
{ 312000, 0x19 },
{ 373600, 0x11 },
{ 467000, 0x09 },
{ 500000, 0x00 }, // Invalid Bandwidth
};
const RadioLoRaBandwidths_t Bandwidths[] = { LORA_BW_125, LORA_BW_250, LORA_BW_500 };
static uint8_t MaxPayloadLength = RADIO_RX_BUF_SIZE;
static uint8_t RadioRxPayload[RADIO_RX_BUF_SIZE];
/*
* Radio callbacks variable
*/
static RadioEvents_t* RadioEvents;
/*!
* Radio hardware and global parameters
*/
SubgRf_t SubgRf;
/*!
* Tx and Rx timers
*/
TimerEvent_t TxTimeoutTimer;
TimerEvent_t RxTimeoutTimer;
/* Exported functions ---------------------------------------------------------*/
static int32_t RadioSetRxGenericConfig( GenericModems_t modem, RxConfigGeneric_t* config, uint32_t rxContinuous, uint32_t symbTimeout)
{
int32_t status=0;
uint8_t syncword[8]={0};
uint8_t MaxPayloadLength;
if( rxContinuous != 0 )
{
symbTimeout = 0;
}
SubgRf.RxContinuous = (rxContinuous==0)? false :true;
switch( modem )
{
case GENERIC_FSK:
if ((config->fsk.BitRate== 0) || (config->fsk.PreambleLen== 0))
{
return -1;
}
if ( config->fsk.SyncWordLength>8)
{
return -1;
}
else
{
for(int i =0; i<config->fsk.SyncWordLength; i++)
{
syncword[i]=config->fsk.SyncWord[i];
}
}
if( config->fsk.LengthMode == RADIO_FSK_PACKET_FIXED_LENGTH )
{
MaxPayloadLength = config->fsk.MaxPayloadLength;
}
else
{
MaxPayloadLength = 0xFF;
}
SUBGRF_SetStopRxTimerOnPreambleDetect( (config->fsk.StopTimerOnPreambleDetect==0)? false:true );
SubgRf.ModulationParams.PacketType = PACKET_TYPE_GFSK;
SubgRf.ModulationParams.Params.Gfsk.BitRate = config->fsk.BitRate;
SubgRf.ModulationParams.Params.Gfsk.ModulationShaping = (RadioModShapings_t) config->fsk.ModulationShaping;
SubgRf.ModulationParams.Params.Gfsk.Bandwidth = RadioGetFskBandwidthRegValue(config->fsk.Bandwidth);
SubgRf.PacketParams.PacketType = PACKET_TYPE_GFSK;
SubgRf.PacketParams.Params.Gfsk.PreambleLength = ( config->fsk.PreambleLen) << 3 ; // convert byte into bit
SubgRf.PacketParams.Params.Gfsk.PreambleMinDetect = (RadioPreambleDetection_t) config->fsk.PreambleMinDetect;
SubgRf.PacketParams.Params.Gfsk.SyncWordLength = (config->fsk.SyncWordLength) << 3; // convert byte into bit
SubgRf.PacketParams.Params.Gfsk.AddrComp = (RadioAddressComp_t)config->fsk.AddrComp;
SubgRf.PacketParams.Params.Gfsk.HeaderType = (RadioPacketLengthModes_t) config->fsk.LengthMode;
SubgRf.PacketParams.Params.Gfsk.PayloadLength = MaxPayloadLength;
SubgRf.PacketParams.Params.Gfsk.CrcLength = (RadioCrcTypes_t) config->fsk.CrcLength;
SubgRf.PacketParams.Params.Gfsk.DcFree = (RadioDcFree_t) config->fsk.Whitening;
RadioStandby( );
RadioSetModem( MODEM_FSK );
SUBGRF_SetModulationParams( &SubgRf.ModulationParams );
SUBGRF_SetPacketParams( &SubgRf.PacketParams );
SUBGRF_SetSyncWord( syncword );
SUBGRF_SetWhiteningSeed( config->fsk.whiteSeed );
SUBGRF_SetCrcPolynomial(config->fsk.CrcPolynomial );
/*timeout*/
SubgRf.RxTimeout = ( uint32_t )( (symbTimeout * 1000* 8 )/config->fsk.BitRate );
break;
case GENERIC_LORA:
if (config->lora.PreambleLen== 0)
{
return -1;
}
if( config->lora.LengthMode == RADIO_LORA_PACKET_FIXED_LENGTH )
{
MaxPayloadLength = config->fsk.MaxPayloadLength;
}
else
{
MaxPayloadLength = 0xFF;
}
SUBGRF_SetStopRxTimerOnPreambleDetect( (config->lora.StopTimerOnPreambleDetect==0)? false:true );
SUBGRF_SetLoRaSymbNumTimeout( symbTimeout );
SubgRf.ModulationParams.PacketType = PACKET_TYPE_LORA;
SubgRf.ModulationParams.Params.LoRa.SpreadingFactor = (RadioLoRaSpreadingFactors_t) config->lora.SpreadingFactor;
SubgRf.ModulationParams.Params.LoRa.Bandwidth = (RadioLoRaBandwidths_t) config->lora.Bandwidth;
SubgRf.ModulationParams.Params.LoRa.CodingRate = (RadioLoRaCodingRates_t) config->lora.Coderate;
switch (config->lora.LowDatarateOptimize)
{
case RADIO_LORA_LOWDR_OPT_OFF:
SubgRf.ModulationParams.Params.LoRa.LowDatarateOptimize = 0;
break;
case RADIO_LORA_LOWDR_OPT_ON:
SubgRf.ModulationParams.Params.LoRa.LowDatarateOptimize = 1;
break;
case RADIO_LORA_LOWDR_OPT_AUTO:
if ((config->lora.SpreadingFactor==RADIO_LORA_SF11) || (config->lora.SpreadingFactor==RADIO_LORA_SF12))
{
SubgRf.ModulationParams.Params.LoRa.LowDatarateOptimize = 1;
}
else
{
SubgRf.ModulationParams.Params.LoRa.LowDatarateOptimize = 0;
}
break;
default:
break;
}
SubgRf.PacketParams.PacketType = PACKET_TYPE_LORA;
SubgRf.PacketParams.Params.LoRa.PreambleLength = config->lora.PreambleLen;
SubgRf.PacketParams.Params.LoRa.HeaderType = (RadioLoRaPacketLengthsMode_t) config->lora.LengthMode;
SubgRf.PacketParams.Params.LoRa.PayloadLength = MaxPayloadLength;
SubgRf.PacketParams.Params.LoRa.CrcMode = (RadioLoRaCrcModes_t) config->lora.CrcMode;
SubgRf.PacketParams.Params.LoRa.InvertIQ = (RadioLoRaIQModes_t) config->lora.IqInverted;
RadioStandby( );
RadioSetModem( MODEM_LORA );
SUBGRF_SetModulationParams( &SubgRf.ModulationParams );
SUBGRF_SetPacketParams( &SubgRf.PacketParams );
// WORKAROUND - Optimizing the Inverted IQ Operation, see DS_SX1261-2_V1.2 datasheet chapter 15.4
if( SubgRf.PacketParams.Params.LoRa.InvertIQ == LORA_IQ_INVERTED )
{
// RegIqPolaritySetup = @address 0x0736
SUBGRF_WriteRegister( 0x0736, SUBGRF_ReadRegister( 0x0736 ) & ~( 1 << 2 ) );
}
else
{
// RegIqPolaritySetup @address 0x0736
SUBGRF_WriteRegister( 0x0736, SUBGRF_ReadRegister( 0x0736 ) | ( 1 << 2 ) );
}
// WORKAROUND END
// Timeout Max, Timeout handled directly in SetRx function
SubgRf.RxTimeout = 0xFFFF;
break;
default:
break;
}
return status;
}
static int32_t RadioSetTxGenericConfig( GenericModems_t modem, TxConfigGeneric_t* config, int8_t power, uint32_t timeout )
{
uint8_t syncword[8]={0};
switch( modem )
{
case GENERIC_FSK:
if ((config->fsk.BitRate== 0) || (config->fsk.PreambleLen== 0))
{
return -1;
}
if ( config->fsk.SyncWordLength>8)
{
return -1;
}
else
{
for(int i =0; i<config->fsk.SyncWordLength; i++)
{
syncword[i]=config->fsk.SyncWord[i];
}
}
SubgRf.ModulationParams.PacketType = PACKET_TYPE_GFSK;
SubgRf.ModulationParams.Params.Gfsk.BitRate = config->fsk.BitRate;
SubgRf.ModulationParams.Params.Gfsk.ModulationShaping = (RadioModShapings_t) config->fsk.ModulationShaping;
SubgRf.ModulationParams.Params.Gfsk.Bandwidth = RadioGetFskBandwidthRegValue( config->fsk.Bandwidth );
SubgRf.ModulationParams.Params.Gfsk.Fdev = config->fsk.FrequencyDeviation;
SubgRf.PacketParams.PacketType = PACKET_TYPE_GFSK;
SubgRf.PacketParams.Params.Gfsk.PreambleLength = ( config->fsk.PreambleLen << 3 ); // convert byte into bit
SubgRf.PacketParams.Params.Gfsk.PreambleMinDetect = RADIO_PREAMBLE_DETECTOR_08_BITS; //don't care in tx
SubgRf.PacketParams.Params.Gfsk.SyncWordLength = (config->fsk.SyncWordLength ) << 3 ; // convert byte into bit
SubgRf.PacketParams.Params.Gfsk.AddrComp = RADIO_ADDRESSCOMP_FILT_OFF; /*don't care in tx*/
SubgRf.PacketParams.Params.Gfsk.HeaderType = (RadioPacketLengthModes_t) config->fsk.HeaderType;
SubgRf.PacketParams.Params.Gfsk.CrcLength = (RadioCrcTypes_t) config->fsk.CrcLength;
SubgRf.PacketParams.Params.Gfsk.DcFree = (RadioDcFree_t) config->fsk.Whitening;
RadioStandby( );
RadioSetModem( MODEM_FSK );
SUBGRF_SetModulationParams( &SubgRf.ModulationParams );
SUBGRF_SetPacketParams( &SubgRf.PacketParams );
SUBGRF_SetSyncWord( syncword );
SUBGRF_SetWhiteningSeed( config->fsk.whiteSeed );
SUBGRF_SetCrcPolynomial(config->fsk.CrcPolynomial );
break;
case GENERIC_LORA:
SubgRf.ModulationParams.PacketType = PACKET_TYPE_LORA;
SubgRf.ModulationParams.Params.LoRa.SpreadingFactor = ( RadioLoRaSpreadingFactors_t ) config->lora.SpreadingFactor;
SubgRf.ModulationParams.Params.LoRa.Bandwidth = (RadioLoRaBandwidths_t) config->lora.Bandwidth;
SubgRf.ModulationParams.Params.LoRa.CodingRate = (RadioLoRaCodingRates_t) config->lora.Coderate;
switch (config->lora.LowDatarateOptimize)
{
case RADIO_LORA_LOWDR_OPT_OFF:
SubgRf.ModulationParams.Params.LoRa.LowDatarateOptimize = 0;
break;
case RADIO_LORA_LOWDR_OPT_ON:
SubgRf.ModulationParams.Params.LoRa.LowDatarateOptimize = 1;
break;
case RADIO_LORA_LOWDR_OPT_AUTO:
if ((config->lora.SpreadingFactor==RADIO_LORA_SF11) || (config->lora.SpreadingFactor==RADIO_LORA_SF12))
{
SubgRf.ModulationParams.Params.LoRa.LowDatarateOptimize = 1;
}
else
{
SubgRf.ModulationParams.Params.LoRa.LowDatarateOptimize = 0;
}
break;
default:
break;
}
SubgRf.ModulationParams.Params.LoRa.LowDatarateOptimize = (config->lora.LowDatarateOptimize==0)?0:1;
SubgRf.PacketParams.PacketType = PACKET_TYPE_LORA;
SubgRf.PacketParams.Params.LoRa.PreambleLength = config->lora.PreambleLen;
SubgRf.PacketParams.Params.LoRa.HeaderType = (RadioLoRaPacketLengthsMode_t) config->lora.LengthMode;
SubgRf.PacketParams.Params.LoRa.CrcMode = (RadioLoRaCrcModes_t) config->lora.CrcMode;
SubgRf.PacketParams.Params.LoRa.InvertIQ = (RadioLoRaIQModes_t) config->lora.IqInverted;
RadioStandby( );
RadioSetModem( MODEM_LORA );
SUBGRF_SetModulationParams( &SubgRf.ModulationParams );
SUBGRF_SetPacketParams( &SubgRf.PacketParams );
// WORKAROUND - Modulation Quality with 500 kHz LoRa<52> Bandwidth, see DS_SX1261-2_V1.2 datasheet chapter 15.1
if( SubgRf.ModulationParams.Params.LoRa.Bandwidth == LORA_BW_500 )
{
// RegTxModulation = @address 0x0889
SUBGRF_WriteRegister( 0x0889, SUBGRF_ReadRegister( 0x0889 ) & ~( 1 << 2 ) );
}
else
{
// RegTxModulation = @address 0x0889
SUBGRF_WriteRegister( 0x0889, SUBGRF_ReadRegister( 0x0889 ) | ( 1 << 2 ) );
}
// WORKAROUND END
break;
case GENERIC_BPSK:
if ((config->fsk.BitRate== 0) || (config->fsk.BitRate> 1000))
{
return -1;
}
RadioSetModem( MODEM_BPSK );
SubgRf.ModulationParams.PacketType = PACKET_TYPE_BPSK;
SubgRf.ModulationParams.Params.Bpsk.BitRate = config->bpsk.BitRate;
SubgRf.ModulationParams.Params.Bpsk.ModulationShaping = MOD_SHAPING_DBPSK;
SUBGRF_SetModulationParams( &SubgRf.ModulationParams );
break;
default:
break;
}
SubgRf.AntSwitchPaSelect = SUBGRF_SetRfTxPower( power );
SubgRf.TxTimeout = timeout;
return 0;
}
/* Private functions ---------------------------------------------------------*/
static uint8_t RadioGetFskBandwidthRegValue( uint32_t bandwidth )
{
uint8_t i;
if( bandwidth == 0 )
{
return( 0x1F );
}
/* ST_WORKAROUND_BEGIN: Simplified loop */
for( i = 0; i < ( sizeof( FskBandwidths ) / sizeof( FskBandwidth_t ) ); i++ )
{
if ( bandwidth < FskBandwidths[i].bandwidth )
{
return FskBandwidths[i].RegValue;
}
}
/* ST_WORKAROUND_END */
// ERROR: Value not found
while( 1 );
}
static void RadioInit( RadioEvents_t *events )
{
RadioEvents = events;
SubgRf.RxContinuous = false;
SubgRf.TxTimeout = 0;
SubgRf.RxTimeout = 0;
SUBGRF_Init( RadioOnDioIrq );
/*SubgRf.publicNetwork set to false*/
RadioSetPublicNetwork( false );
SUBGRF_SetRegulatorMode( );
SUBGRF_SetBufferBaseAddress( 0x00, 0x00 );
SUBGRF_SetTxParams(RFO_LP, 0, RADIO_RAMP_200_US);
SUBGRF_SetDioIrqParams( IRQ_RADIO_ALL, IRQ_RADIO_ALL, IRQ_RADIO_NONE, IRQ_RADIO_NONE );
/* ST_WORKAROUND_BEGIN: Sleep radio */
RadioSleep();
/* ST_WORKAROUND_END */
// Initialize driver timeout timers
TimerInit( &TxTimeoutTimer, RadioOnTxTimeoutIrq );
TimerInit( &RxTimeoutTimer, RadioOnRxTimeoutIrq );
TimerStop( &TxTimeoutTimer );
TimerStop( &RxTimeoutTimer );
}
static RadioState_t RadioGetStatus( void )
{
switch( SUBGRF_GetOperatingMode( ) )
{
case MODE_TX:
return RF_TX_RUNNING;
case MODE_RX:
return RF_RX_RUNNING;
case MODE_CAD:
return RF_CAD;
default:
return RF_IDLE;
}
}
static void RadioSetModem( RadioModems_t modem )
{
SubgRf.Modem = modem;
switch( modem )
{
default:
case MODEM_FSK:
SUBGRF_SetPacketType( PACKET_TYPE_GFSK );
// When switching to GFSK mode the LoRa SyncWord register value is reset
// Thus, we also reset the RadioPublicNetwork variable
SubgRf.PublicNetwork.Current = false;
break;
case MODEM_LORA:
SUBGRF_SetPacketType( PACKET_TYPE_LORA );
// Public/Private network register is reset when switching modems
if( SubgRf.PublicNetwork.Current != SubgRf.PublicNetwork.Previous )
{
SubgRf.PublicNetwork.Current = SubgRf.PublicNetwork.Previous;
RadioSetPublicNetwork( SubgRf.PublicNetwork.Current );
}
break;
case MODEM_SIGFOX_TX:
SUBGRF_SetPacketType( PACKET_TYPE_BPSK );
break;
case MODEM_SIGFOX_RX:
SUBGRF_SetPacketType( PACKET_TYPE_GFSK );
break;
}
}
static void RadioSetChannel( uint32_t freq )
{
SUBGRF_SetRfFrequency( freq );
}
static bool RadioIsChannelFree( uint32_t freq, uint32_t rxBandwidth, int16_t rssiThresh, uint32_t maxCarrierSenseTime )
{
bool status = true;
int16_t rssi = 0;
uint32_t carrierSenseTime = 0;
/* ST_WORKAROUND_BEGIN: Prevent multiple sleeps with TXCO delay */
RadioStandby( );
/* ST_WORKAROUND_END */
RadioSetModem( MODEM_FSK );
RadioSetChannel( freq );
// Set Rx bandwidth. Other parameters are not used.
RadioSetRxConfig( MODEM_FSK, rxBandwidth, 600, 0, rxBandwidth, 3, 0, false,
0, false, 0, 0, false, true );
RadioRx( 0 );
RADIO_DELAY_MS( RadioGetWakeupTime( ) );
carrierSenseTime = TimerGetCurrentTime( );
// Perform carrier sense for maxCarrierSenseTime
while( TimerGetElapsedTime( carrierSenseTime ) < maxCarrierSenseTime )
{
rssi = RadioRssi( MODEM_FSK );
if( rssi > rssiThresh )
{
status = false;
break;
}
}
/* ST_WORKAROUND_BEGIN: Prevent multiple sleeps with TXCO delay */
RadioStandby( );
/* ST_WORKAROUND_END */
return status;
}
static uint32_t RadioRandom( void )
{
uint32_t rnd = 0;
/*
* Radio setup for random number generation
*/
/* Set LoRa modem ON */
RadioSetModem( MODEM_LORA );
/* Disable LoRa modem interrupts */
SUBGRF_SetDioIrqParams( IRQ_RADIO_NONE, IRQ_RADIO_NONE, IRQ_RADIO_NONE, IRQ_RADIO_NONE );
rnd = SUBGRF_GetRandom();
return rnd;
}
static void RadioSetRxConfig( RadioModems_t modem, uint32_t bandwidth,
uint32_t datarate, uint8_t coderate,
uint32_t bandwidthAfc, uint16_t preambleLen,
uint16_t symbTimeout, bool fixLen,
uint8_t payloadLen,
bool crcOn, bool freqHopOn, uint8_t hopPeriod,
bool iqInverted, bool rxContinuous )
{
uint8_t modReg;
SubgRf.RxContinuous = rxContinuous;
if( rxContinuous == true )
{
symbTimeout = 0;
}
if( fixLen == true )
{
MaxPayloadLength = payloadLen;
}
else
{
MaxPayloadLength = 0xFF;
}
switch( modem )
{
case MODEM_SIGFOX_RX:
SUBGRF_SetStopRxTimerOnPreambleDetect( true );
SubgRf.ModulationParams.PacketType = PACKET_TYPE_GFSK;
SubgRf.ModulationParams.Params.Gfsk.BitRate = datarate;
SubgRf.ModulationParams.Params.Gfsk.ModulationShaping = MOD_SHAPING_G_BT_05;
SubgRf.ModulationParams.Params.Gfsk.Fdev = 800;
SubgRf.ModulationParams.Params.Gfsk.Bandwidth = RadioGetFskBandwidthRegValue( bandwidth );
SubgRf.PacketParams.PacketType = PACKET_TYPE_GFSK;
SubgRf.PacketParams.Params.Gfsk.PreambleLength = ( preambleLen << 3 ); // convert byte into bit
SubgRf.PacketParams.Params.Gfsk.PreambleMinDetect = RADIO_PREAMBLE_DETECTOR_OFF;
SubgRf.PacketParams.Params.Gfsk.SyncWordLength = 2 << 3; // convert byte into bit
SubgRf.PacketParams.Params.Gfsk.AddrComp = RADIO_ADDRESSCOMP_FILT_OFF;
SubgRf.PacketParams.Params.Gfsk.HeaderType = RADIO_PACKET_FIXED_LENGTH;
SubgRf.PacketParams.Params.Gfsk.PayloadLength = MaxPayloadLength;
SubgRf.PacketParams.Params.Gfsk.CrcLength = RADIO_CRC_OFF;
SubgRf.PacketParams.Params.Gfsk.DcFree = RADIO_DC_FREE_OFF;
RadioSetModem( MODEM_SIGFOX_RX );
SUBGRF_SetModulationParams( &SubgRf.ModulationParams );
SUBGRF_SetPacketParams( &SubgRf.PacketParams );
SUBGRF_SetSyncWord( ( uint8_t[] ){0xB2, 0x27, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 } );
SUBGRF_SetWhiteningSeed( 0x01FF );
/* NO gfo reset (better sensitivity). Reg 0x8b8, bit4 = 0 */
modReg= RadioRead(0x8b8);
modReg&=RADIO_BIT_MASK(4);
RadioWrite(0x8b8, modReg);
/* Lower the threshold of cfo_reset */
RadioWrite(0x8b9, 0x4 );
/* Bigger rssi_len (stability AGC). Reg 0x89b, bits[2 :4] = 0x1 */
modReg= RadioRead(0x89b);
modReg&=( RADIO_BIT_MASK(2) & RADIO_BIT_MASK(3) & RADIO_BIT_MASK(4) );
RadioWrite(0x89b, (modReg| (0x1<<3) ) );
/* Biger afc_pbl_len (better frequency correction). Reg 0x6d1, bits[3 :4] = 0x3 */
modReg= RadioRead(0x6d1);
modReg&=( RADIO_BIT_MASK(3) & RADIO_BIT_MASK(4) );
RadioWrite(0x6d1, (modReg| (0x3<<3) ));
/* Use of new bit synchronizer (to avoid CRC errors during PER for payloads with a small amount of transitions). Reg 0x6ac, bits[4 :6] = 0x5 */
modReg= RadioRead(0x6ac);
modReg&=( RADIO_BIT_MASK(4) & RADIO_BIT_MASK(5) & RADIO_BIT_MASK(6) );
RadioWrite(0x6ac, (modReg| (0x5<<4) ));
SubgRf.RxTimeout = ( uint32_t )(( symbTimeout * 8 * 1000 ) /datarate);
break;
case MODEM_FSK:
SUBGRF_SetStopRxTimerOnPreambleDetect( false );
SubgRf.ModulationParams.PacketType = PACKET_TYPE_GFSK;
SubgRf.ModulationParams.Params.Gfsk.BitRate = datarate;
SubgRf.ModulationParams.Params.Gfsk.ModulationShaping = MOD_SHAPING_G_BT_1;
SubgRf.ModulationParams.Params.Gfsk.Bandwidth = RadioGetFskBandwidthRegValue( bandwidth );
SubgRf.PacketParams.PacketType = PACKET_TYPE_GFSK;
SubgRf.PacketParams.Params.Gfsk.PreambleLength = ( preambleLen << 3 ); // convert byte into bit
SubgRf.PacketParams.Params.Gfsk.PreambleMinDetect = RADIO_PREAMBLE_DETECTOR_08_BITS;
SubgRf.PacketParams.Params.Gfsk.SyncWordLength = 3 << 3; // convert byte into bit
SubgRf.PacketParams.Params.Gfsk.AddrComp = RADIO_ADDRESSCOMP_FILT_OFF;
SubgRf.PacketParams.Params.Gfsk.HeaderType = ( fixLen == true ) ? RADIO_PACKET_FIXED_LENGTH : RADIO_PACKET_VARIABLE_LENGTH;
SubgRf.PacketParams.Params.Gfsk.PayloadLength = MaxPayloadLength;
if( crcOn == true )
{
SubgRf.PacketParams.Params.Gfsk.CrcLength = RADIO_CRC_2_BYTES_CCIT;
}
else
{
SubgRf.PacketParams.Params.Gfsk.CrcLength = RADIO_CRC_OFF;
}
SubgRf.PacketParams.Params.Gfsk.DcFree = RADIO_DC_FREEWHITENING;
RadioStandby( );
RadioSetModem( ( SubgRf.ModulationParams.PacketType == PACKET_TYPE_GFSK ) ? MODEM_FSK : MODEM_LORA );
SUBGRF_SetModulationParams( &SubgRf.ModulationParams );
SUBGRF_SetPacketParams( &SubgRf.PacketParams );
SUBGRF_SetSyncWord( ( uint8_t[] ){ 0xC1, 0x94, 0xC1, 0x00, 0x00, 0x00, 0x00, 0x00 } );
SUBGRF_SetWhiteningSeed( 0x01FF );
SubgRf.RxTimeout = ( uint32_t )(( symbTimeout * 8 * 1000 ) /datarate);
break;
case MODEM_LORA:
SUBGRF_SetStopRxTimerOnPreambleDetect( false );
SubgRf.ModulationParams.PacketType = PACKET_TYPE_LORA;
SubgRf.ModulationParams.Params.LoRa.SpreadingFactor = ( RadioLoRaSpreadingFactors_t )datarate;
SubgRf.ModulationParams.Params.LoRa.Bandwidth = Bandwidths[bandwidth];
SubgRf.ModulationParams.Params.LoRa.CodingRate = ( RadioLoRaCodingRates_t )coderate;
if( ( ( bandwidth == 0 ) && ( ( datarate == 11 ) || ( datarate == 12 ) ) ) ||
( ( bandwidth == 1 ) && ( datarate == 12 ) ) )
{
SubgRf.ModulationParams.Params.LoRa.LowDatarateOptimize = 0x01;
}
else
{
SubgRf.ModulationParams.Params.LoRa.LowDatarateOptimize = 0x00;
}
SubgRf.PacketParams.PacketType = PACKET_TYPE_LORA;
if( ( SubgRf.ModulationParams.Params.LoRa.SpreadingFactor == LORA_SF5 ) ||
( SubgRf.ModulationParams.Params.LoRa.SpreadingFactor == LORA_SF6 ) )
{
if( preambleLen < 12 )
{
SubgRf.PacketParams.Params.LoRa.PreambleLength = 12;
}
else
{
SubgRf.PacketParams.Params.LoRa.PreambleLength = preambleLen;
}
}
else
{
SubgRf.PacketParams.Params.LoRa.PreambleLength = preambleLen;
}
SubgRf.PacketParams.Params.LoRa.HeaderType = ( RadioLoRaPacketLengthsMode_t )fixLen;
SubgRf.PacketParams.Params.LoRa.PayloadLength = MaxPayloadLength;
SubgRf.PacketParams.Params.LoRa.CrcMode = ( RadioLoRaCrcModes_t )crcOn;
SubgRf.PacketParams.Params.LoRa.InvertIQ = ( RadioLoRaIQModes_t )iqInverted;
RadioStandby( );
RadioSetModem( ( SubgRf.ModulationParams.PacketType == PACKET_TYPE_GFSK ) ? MODEM_FSK : MODEM_LORA );
SUBGRF_SetModulationParams( &SubgRf.ModulationParams );
SUBGRF_SetPacketParams( &SubgRf.PacketParams );
SUBGRF_SetLoRaSymbNumTimeout( symbTimeout );
/* WORKAROUND - Optimizing the Inverted IQ Operation, see DS_SX1261-2_V1.2 datasheet chapter 15.4 */
if( SubgRf.PacketParams.Params.LoRa.InvertIQ == LORA_IQ_INVERTED )
{
/* RegIqPolaritySetup = @address 0x0736 */
SUBGRF_WriteRegister( 0x0736, SUBGRF_ReadRegister( 0x0736 ) & ~( 1 << 2 ) );
}
else
{
/* RegIqPolaritySetup @address 0x0736 */
SUBGRF_WriteRegister( 0x0736, SUBGRF_ReadRegister( 0x0736 ) | ( 1 << 2 ) );
}
/* WORKAROUND END */
/* Timeout Max, Timeout handled directly in SetRx function */
SubgRf.RxTimeout = 0xFFFF;
break;
default:
break;
}
}
static void RadioSetTxConfig( RadioModems_t modem, int8_t power, uint32_t fdev,
uint32_t bandwidth, uint32_t datarate,
uint8_t coderate, uint16_t preambleLen,
bool fixLen, bool crcOn, bool freqHopOn,
uint8_t hopPeriod, bool iqInverted, uint32_t timeout )
{
switch( modem )
{
case MODEM_SIGFOX_TX:
RadioSetModem(MODEM_SIGFOX_TX);
SubgRf.ModulationParams.PacketType = PACKET_TYPE_BPSK;
SubgRf.ModulationParams.Params.Bpsk.BitRate = datarate;
SubgRf.ModulationParams.Params.Bpsk.ModulationShaping = MOD_SHAPING_DBPSK;
SUBGRF_SetModulationParams( &SubgRf.ModulationParams );
break;
case MODEM_FSK:
SubgRf.ModulationParams.PacketType = PACKET_TYPE_GFSK;
SubgRf.ModulationParams.Params.Gfsk.BitRate = datarate;
SubgRf.ModulationParams.Params.Gfsk.ModulationShaping = MOD_SHAPING_G_BT_1;
SubgRf.ModulationParams.Params.Gfsk.Bandwidth = RadioGetFskBandwidthRegValue( bandwidth );
SubgRf.ModulationParams.Params.Gfsk.Fdev = fdev;
SubgRf.PacketParams.PacketType = PACKET_TYPE_GFSK;
SubgRf.PacketParams.Params.Gfsk.PreambleLength = ( preambleLen << 3 ); // convert byte into bit
SubgRf.PacketParams.Params.Gfsk.PreambleMinDetect = RADIO_PREAMBLE_DETECTOR_08_BITS;
SubgRf.PacketParams.Params.Gfsk.SyncWordLength = 3 << 3 ; // convert byte into bit
SubgRf.PacketParams.Params.Gfsk.AddrComp = RADIO_ADDRESSCOMP_FILT_OFF;
SubgRf.PacketParams.Params.Gfsk.HeaderType = ( fixLen == true ) ? RADIO_PACKET_FIXED_LENGTH : RADIO_PACKET_VARIABLE_LENGTH;
if( crcOn == true )
{
SubgRf.PacketParams.Params.Gfsk.CrcLength = RADIO_CRC_2_BYTES_CCIT;
}
else
{
SubgRf.PacketParams.Params.Gfsk.CrcLength = RADIO_CRC_OFF;
}
SubgRf.PacketParams.Params.Gfsk.DcFree = RADIO_DC_FREEWHITENING;
RadioStandby( );
RadioSetModem( ( SubgRf.ModulationParams.PacketType == PACKET_TYPE_GFSK ) ? MODEM_FSK : MODEM_LORA );
SUBGRF_SetModulationParams( &SubgRf.ModulationParams );
SUBGRF_SetPacketParams( &SubgRf.PacketParams );
SUBGRF_SetSyncWord( ( uint8_t[] ){ 0xC1, 0x94, 0xC1, 0x00, 0x00, 0x00, 0x00, 0x00 } );
SUBGRF_SetWhiteningSeed( 0x01FF );
break;
case MODEM_LORA:
SubgRf.ModulationParams.PacketType = PACKET_TYPE_LORA;
SubgRf.ModulationParams.Params.LoRa.SpreadingFactor = ( RadioLoRaSpreadingFactors_t ) datarate;
SubgRf.ModulationParams.Params.LoRa.Bandwidth = Bandwidths[bandwidth];
SubgRf.ModulationParams.Params.LoRa.CodingRate= ( RadioLoRaCodingRates_t )coderate;
if( ( ( bandwidth == 0 ) && ( ( datarate == 11 ) || ( datarate == 12 ) ) ) ||
( ( bandwidth == 1 ) && ( datarate == 12 ) ) )
{
SubgRf.ModulationParams.Params.LoRa.LowDatarateOptimize = 0x01;
}
else
{
SubgRf.ModulationParams.Params.LoRa.LowDatarateOptimize = 0x00;
}
SubgRf.PacketParams.PacketType = PACKET_TYPE_LORA;
if( ( SubgRf.ModulationParams.Params.LoRa.SpreadingFactor == LORA_SF5 ) ||
( SubgRf.ModulationParams.Params.LoRa.SpreadingFactor == LORA_SF6 ) )
{
if( preambleLen < 12 )
{
SubgRf.PacketParams.Params.LoRa.PreambleLength = 12;
}
else
{
SubgRf.PacketParams.Params.LoRa.PreambleLength = preambleLen;
}
}
else
{
SubgRf.PacketParams.Params.LoRa.PreambleLength = preambleLen;
}
SubgRf.PacketParams.Params.LoRa.HeaderType = ( RadioLoRaPacketLengthsMode_t )fixLen;
SubgRf.PacketParams.Params.LoRa.PayloadLength = MaxPayloadLength;
SubgRf.PacketParams.Params.LoRa.CrcMode = ( RadioLoRaCrcModes_t )crcOn;
SubgRf.PacketParams.Params.LoRa.InvertIQ = ( RadioLoRaIQModes_t )iqInverted;
RadioStandby( );
RadioSetModem( ( SubgRf.ModulationParams.PacketType == PACKET_TYPE_GFSK ) ? MODEM_FSK : MODEM_LORA );
SUBGRF_SetModulationParams( &SubgRf.ModulationParams );
SUBGRF_SetPacketParams( &SubgRf.PacketParams );
default:
break;
}
/* WORKAROUND - Modulation Quality with 500 kHz LoRa<52> Bandwidth, see DS_SX1261-2_V1.2 datasheet chapter 15.1 */
if( ( modem == MODEM_LORA ) && ( SubgRf.ModulationParams.Params.LoRa.Bandwidth == LORA_BW_500 ) )
{
/* RegTxModulation = @address 0x0889 */
SUBGRF_WriteRegister( 0x0889, SUBGRF_ReadRegister( 0x0889 ) & ~( 1 << 2 ) );
}
else
{
/* RegTxModulation = @address 0x0889 */
SUBGRF_WriteRegister( 0x0889, SUBGRF_ReadRegister( 0x0889 ) | ( 1 << 2 ) );
}
/* WORKAROUND END */
SubgRf.AntSwitchPaSelect = SUBGRF_SetRfTxPower( power );
SubgRf.TxTimeout = timeout;
}
static bool RadioCheckRfFrequency( uint32_t frequency )
{
return true;
}
static uint32_t RadioGetLoRaBandwidthInHz( RadioLoRaBandwidths_t bw )
{
uint32_t bandwidthInHz = 0;
switch( bw )
{
case LORA_BW_007:
bandwidthInHz = 7812UL;
break;
case LORA_BW_010:
bandwidthInHz = 10417UL;
break;
case LORA_BW_015:
bandwidthInHz = 15625UL;
break;
case LORA_BW_020:
bandwidthInHz = 20833UL;
break;
case LORA_BW_031:
bandwidthInHz = 31250UL;
break;
case LORA_BW_041:
bandwidthInHz = 41667UL;
break;
case LORA_BW_062:
bandwidthInHz = 62500UL;
break;
case LORA_BW_125:
bandwidthInHz = 125000UL;
break;
case LORA_BW_250:
bandwidthInHz = 250000UL;
break;
case LORA_BW_500:
bandwidthInHz = 500000UL;
break;
}
return bandwidthInHz;
}
static uint32_t RadioGetGfskTimeOnAirNumerator( uint32_t datarate, uint8_t coderate,
uint16_t preambleLen, bool fixLen, uint8_t payloadLen,
bool crcOn )
{
/*
const RadioAddressComp_t addrComp = RADIO_ADDRESSCOMP_FILT_OFF;
const uint8_t syncWordLength = 3;
return ( preambleLen << 3 ) +
( ( fixLen == false ) ? 8 : 0 ) +
( syncWordLength << 3 ) +
( ( payloadLen +
( addrComp == RADIO_ADDRESSCOMP_FILT_OFF ? 0 : 1 ) +
( ( crcOn == true ) ? 2 : 0 )
) << 3
);
*/
/* ST_WORKAROUND_BEGIN: Simplified calculation without const values */
return ( preambleLen << 3 ) +
( ( fixLen == false ) ? 8 : 0 ) + 24 +
( ( payloadLen + ( ( crcOn == true ) ? 2 : 0 ) ) << 3 );
/* ST_WORKAROUND_END */
}
static uint32_t RadioGetLoRaTimeOnAirNumerator( uint32_t bandwidth,
uint32_t datarate, uint8_t coderate,
uint16_t preambleLen, bool fixLen, uint8_t payloadLen,
bool crcOn )
{
int32_t crDenom = coderate + 4;
bool lowDatareOptimize = false;
/* Ensure that the preamble length is at least 12 symbols when using SF5 or SF6 */
if( ( datarate == 5 ) || ( datarate == 6 ) )
{
if( preambleLen < 12 )
{
preambleLen = 12;
}
}
if( ( ( bandwidth == 0 ) && ( ( datarate == 11 ) || ( datarate == 12 ) ) ) ||
( ( bandwidth == 1 ) && ( datarate == 12 ) ) )
{
lowDatareOptimize = true;
}
int32_t ceilDenominator;
int32_t ceilNumerator = ( payloadLen << 3 ) +
( crcOn ? 16 : 0 ) -
( 4 * datarate ) +
( fixLen ? 0 : 20 );
if( datarate <= 6 )
{
ceilDenominator = 4 * datarate;
}
else
{
ceilNumerator += 8;
if( lowDatareOptimize == true )
{
ceilDenominator = 4 * ( datarate - 2 );
}
else
{
ceilDenominator = 4 * datarate;
}
}
if( ceilNumerator < 0 )
{
ceilNumerator = 0;
}
// Perform integral ceil()
int32_t intermediate =
( ( ceilNumerator + ceilDenominator - 1 ) / ceilDenominator ) * crDenom + preambleLen + 12;
if( datarate <= 6 )
{
intermediate += 2;
}
return ( uint32_t )( ( 4 * intermediate + 1 ) * ( 1 << ( datarate - 2 ) ) );
}
static uint32_t RadioTimeOnAir( RadioModems_t modem, uint32_t bandwidth,
uint32_t datarate, uint8_t coderate,
uint16_t preambleLen, bool fixLen, uint8_t payloadLen,
bool crcOn )
{
uint32_t numerator = 0;
uint32_t denominator = 1;
switch( modem )
{
case MODEM_FSK:
{
numerator = 1000U * RadioGetGfskTimeOnAirNumerator( datarate, coderate,
preambleLen, fixLen,
payloadLen, crcOn );
denominator = datarate;
}
break;
case MODEM_LORA:
{
numerator = 1000U * RadioGetLoRaTimeOnAirNumerator( bandwidth, datarate,
coderate, preambleLen,
fixLen, payloadLen, crcOn );
denominator = RadioGetLoRaBandwidthInHz( Bandwidths[bandwidth] );
}
break;
default:
break;
}
// Perform integral ceil()
return DIVC(numerator, denominator);
}
static void RadioSend( uint8_t *buffer, uint8_t size )
{
/* Radio IRQ is set to DIO1 by default */
SUBGRF_SetDioIrqParams( IRQ_TX_DONE | IRQ_RX_TX_TIMEOUT,
IRQ_TX_DONE | IRQ_RX_TX_TIMEOUT,
IRQ_RADIO_NONE,
IRQ_RADIO_NONE );
/* ST_WORKAROUND_BEGIN : Set the debug pin and update the radio switch */
/* Set DBG pin */
DBG_GPIO_RADIO_TX(SET);
/* Set RF switch */
SUBGRF_SetSwitch(SubgRf.AntSwitchPaSelect, RFSWITCH_TX);
/* ST_WORKAROUND_END */
switch(SubgRf.Modem)
{
case MODEM_LORA:
{
SubgRf.PacketParams.Params.LoRa.PayloadLength = size;
SUBGRF_SetPacketParams( &SubgRf.PacketParams );
SUBGRF_SendPayload( buffer, size, 0 );
break;
}
case MODEM_FSK:
{
SubgRf.PacketParams.Params.Gfsk.PayloadLength = size;
SUBGRF_SetPacketParams( &SubgRf.PacketParams );
SUBGRF_SendPayload( buffer, size, 0 );
break;
}
case MODEM_BPSK:
{
SubgRf.PacketParams.PacketType = PACKET_TYPE_BPSK;
SubgRf.PacketParams.Params.Bpsk.PayloadLength = size;
SUBGRF_SetPacketParams( &SubgRf.PacketParams );
SUBGRF_SendPayload( buffer, size, 0 );
break;
}
case MODEM_SIGFOX_TX:
{
uint8_t outBuffer[35] = {0};
/*from bpsk to dbpsk*/
/*first 1 bit duplicated*/
payload_integration( outBuffer, buffer, size );
SubgRf.PacketParams.PacketType = PACKET_TYPE_BPSK;
SubgRf.PacketParams.Params.Bpsk.PayloadLength = size + 1;
SUBGRF_SetPacketParams( &SubgRf.PacketParams );
if( SubgRf.ModulationParams.Params.Bpsk.BitRate == 100 )
{
RadioWrite( 0x00F1, 0 ); // clean start-up LSB
RadioWrite( 0x00F0, 0 ); // clean start-up MSB
RadioWrite( 0x00F3, 0x70 ); // clean end of frame LSB
RadioWrite( 0x00F2, 0x1D ); // clean end of frame MSB
}
else // 600 bps
{
RadioWrite( 0x00F1, 0 ); // clean start-up LSB
RadioWrite( 0x00F0, 0 ); // clean start-up MSB
RadioWrite( 0x00F3, 0xE1 ); // clean end of frame LSB
RadioWrite( 0x00F2, 0x04 ); // clean end of frame MSB
}
uint16_t bitNum = (size*8)+2;
RadioWrite( 0x00F4, ( bitNum >> 8 ) & 0x00FF ); // limit frame
RadioWrite( 0x00F5, bitNum & 0x00FF ); // limit frame
//
SUBGRF_SendPayload( outBuffer, size+1 , 0xFFFFFF );
break;
}
default:
break;
}
TimerSetValue( &TxTimeoutTimer, SubgRf.TxTimeout );
TimerStart( &TxTimeoutTimer );
}
static void RadioSleep( void )
{
SleepParams_t params = { 0 };
params.Fields.WarmStart = 1;
SUBGRF_SetSleep( params );
RADIO_DELAY_MS( 2 );
}
static void RadioStandby( void )
{
SUBGRF_SetStandby( STDBY_RC );
}
static void RadioRx( uint32_t timeout )
{
/* Radio IRQ is set to DIO1 by default */
SUBGRF_SetDioIrqParams( IRQ_RADIO_ALL, //IRQ_RX_DONE | IRQ_RX_TX_TIMEOUT,
IRQ_RADIO_ALL, //IRQ_RX_DONE | IRQ_RX_TX_TIMEOUT,
IRQ_RADIO_NONE,
IRQ_RADIO_NONE );
if( timeout != 0 )
{
TimerSetValue( &RxTimeoutTimer, timeout );
TimerStart( &RxTimeoutTimer );
}
/* ST_WORKAROUND_BEGIN : Set the debug pin and update the radio switch */
/* Set DBG pin */
DBG_GPIO_RADIO_RX(SET);
/* RF switch configuration */
SUBGRF_SetSwitch(SubgRf.AntSwitchPaSelect, RFSWITCH_RX);
/* ST_WORKAROUND_END */
if( SubgRf.RxContinuous == true )
{
SUBGRF_SetRx( 0xFFFFFF ); // Rx Continuous
}
else
{
SUBGRF_SetRx( SubgRf.RxTimeout << 6 );
}
}
static void RadioRxBoosted( uint32_t timeout )
{
SUBGRF_SetDioIrqParams( IRQ_RADIO_ALL, //IRQ_RX_DONE | IRQ_RX_TX_TIMEOUT,
IRQ_RADIO_ALL, //IRQ_RX_DONE | IRQ_RX_TX_TIMEOUT,
IRQ_RADIO_NONE,
IRQ_RADIO_NONE );
if( timeout != 0 )
{
TimerSetValue( &RxTimeoutTimer, timeout );
TimerStart( &RxTimeoutTimer );
}
/* RF switch configuration */
SUBGRF_SetSwitch(SubgRf.AntSwitchPaSelect, RFSWITCH_RX);
if( SubgRf.RxContinuous == true )
{
SUBGRF_SetRxBoosted( 0xFFFFFF ); // Rx Continuous
}
else
{
SUBGRF_SetRxBoosted( SubgRf.RxTimeout << 6 );
}
}
static void RadioSetRxDutyCycle( uint32_t rxTime, uint32_t sleepTime )
{
/* RF switch configuration */
SUBGRF_SetSwitch(SubgRf.AntSwitchPaSelect, RFSWITCH_RX);
SUBGRF_SetRxDutyCycle( rxTime, sleepTime );
}
static void RadioStartCad( void )
{
SUBGRF_SetDioIrqParams( IRQ_CAD_CLEAR | IRQ_CAD_DETECTED, IRQ_CAD_CLEAR | IRQ_CAD_DETECTED, IRQ_RADIO_NONE, IRQ_RADIO_NONE );
SUBGRF_SetCad( );
}
static void RadioSetTxContinuousWave( uint32_t freq, int8_t power, uint16_t time )
{
uint32_t timeout = (uint32_t)time * 1000;
uint8_t antswitchpow;
SUBGRF_SetRfFrequency( freq );
antswitchpow = SUBGRF_SetRfTxPower( power );
/* Set RF switch */
SUBGRF_SetSwitch(antswitchpow, RFSWITCH_TX);
SUBGRF_SetTxContinuousWave( );
TimerSetValue( &TxTimeoutTimer, timeout );
TimerStart( &TxTimeoutTimer );
}
static int16_t RadioRssi( RadioModems_t modem )
{
return SUBGRF_GetRssiInst( );
}
static void RadioWrite( uint16_t addr, uint8_t data )
{
SUBGRF_WriteRegister(addr, data );
}
static uint8_t RadioRead( uint16_t addr )
{
return SUBGRF_ReadRegister(addr);
}
static void RadioWriteRegisters( uint16_t addr, uint8_t *buffer, uint8_t size )
{
SUBGRF_WriteRegisters( addr, buffer, size );
}
static void RadioReadRegisters( uint16_t addr, uint8_t *buffer, uint8_t size )
{
SUBGRF_ReadRegisters( addr, buffer, size );
}
static void RadioSetMaxPayloadLength( RadioModems_t modem, uint8_t max )
{
if( modem == MODEM_LORA )
{
SubgRf.PacketParams.Params.LoRa.PayloadLength = MaxPayloadLength = max;
SUBGRF_SetPacketParams( &SubgRf.PacketParams );
}
else
{
if( SubgRf.PacketParams.Params.Gfsk.HeaderType == RADIO_PACKET_VARIABLE_LENGTH )
{
SubgRf.PacketParams.Params.Gfsk.PayloadLength = MaxPayloadLength = max;
SUBGRF_SetPacketParams( &SubgRf.PacketParams );
}
}
}
static void RadioSetPublicNetwork( bool enable )
{
SubgRf.PublicNetwork.Current = SubgRf.PublicNetwork.Previous = enable;
RadioSetModem( MODEM_LORA );
if( enable == true )
{
/* Change LoRa modem SyncWord */
SUBGRF_WriteRegister( REG_LR_SYNCWORD, ( LORA_MAC_PUBLIC_SYNCWORD >> 8 ) & 0xFF );
SUBGRF_WriteRegister( REG_LR_SYNCWORD + 1, LORA_MAC_PUBLIC_SYNCWORD & 0xFF );
}
else
{
/* Change LoRa modem SyncWord */
SUBGRF_WriteRegister( REG_LR_SYNCWORD, ( LORA_MAC_PRIVATE_SYNCWORD >> 8 ) & 0xFF );
SUBGRF_WriteRegister( REG_LR_SYNCWORD + 1, LORA_MAC_PRIVATE_SYNCWORD & 0xFF );
}
}
static uint32_t RadioGetWakeupTime( void )
{
return SUBGRF_GetRadioWakeUpTime() + RADIO_WAKEUP_TIME;
}
static void RadioOnTxTimeoutIrq( void* context )
{
/* ST_WORKAROUND_BEGIN: Reset DBG pin */
DBG_GPIO_RADIO_TX(RST);
/* ST_WORKAROUND_END */
if( ( RadioEvents != NULL ) && ( RadioEvents->TxTimeout != NULL ) )
{
RadioEvents->TxTimeout( );
}
}
static void RadioOnRxTimeoutIrq( void* context )
{
/* ST_WORKAROUND_BEGIN: Reset DBG pin */
DBG_GPIO_RADIO_RX(RST);
/* ST_WORKAROUND_END */
if( ( RadioEvents != NULL ) && ( RadioEvents->RxTimeout != NULL ) )
{
RadioEvents->RxTimeout( );
}
}
static void RadioOnDioIrq( RadioIrqMasks_t radioIrq )
{
SubgRf.RadioIrq = radioIrq;
RadioIrqProcess();
}
static void RadioIrqProcess( void )
{
uint8_t size;
switch (SubgRf.RadioIrq)
{
case IRQ_TX_DONE:
/* ST_WORKAROUND_BEGIN: Reset DBG pin */
DBG_GPIO_RADIO_TX(RST);
/* ST_WORKAROUND_END */
TimerStop( &TxTimeoutTimer );
SUBGRF_SetStandby( STDBY_RC );
if( ( RadioEvents != NULL ) && ( RadioEvents->TxDone != NULL ) )
{
RadioEvents->TxDone( );
}
break;
case IRQ_RX_DONE:
/* ST_WORKAROUND_BEGIN: Reset DBG pin */
DBG_GPIO_RADIO_RX(RST);
/* ST_WORKAROUND_END */
TimerStop( &RxTimeoutTimer );
if( SubgRf.RxContinuous == false )
{
//!< Update operating mode state to a value lower than \ref MODE_STDBY_XOSC
SUBGRF_SetStandby( STDBY_RC );
// WORKAROUND - Implicit Header Mode Timeout Behavior, see DS_SX1261-2_V1.2 datasheet chapter 15.3
// RegRtcControl = @address 0x0902
SUBGRF_WriteRegister( 0x0902, 0x00 );
// RegEventMask = @address 0x0944
SUBGRF_WriteRegister( 0x0944, SUBGRF_ReadRegister( 0x0944 ) | ( 1 << 1 ) );
// WORKAROUND END
}
SUBGRF_GetPayload( RadioRxPayload, &size , 255 );
SUBGRF_GetPacketStatus( &(SubgRf.PacketStatus) );
if( ( RadioEvents != NULL ) && ( RadioEvents->RxDone != NULL ) )
{
switch (SubgRf.PacketStatus.packetType)
{
case PACKET_TYPE_LORA:
RadioEvents->RxDone( RadioRxPayload, size, SubgRf.PacketStatus.Params.LoRa.RssiPkt, SubgRf.PacketStatus.Params.LoRa.SnrPkt );
break;
default:
RadioEvents->RxDone( RadioRxPayload, size, SubgRf.PacketStatus.Params.Gfsk.RssiAvg, (int8_t)(SubgRf.PacketStatus.Params.Gfsk.FreqError) );
break;
}
}
break;
case IRQ_CRC_ERROR:
if( SubgRf.RxContinuous == false )
{
//!< Update operating mode state to a value lower than \ref MODE_STDBY_XOSC
SUBGRF_SetStandby( STDBY_RC );
}
if( ( RadioEvents != NULL ) && ( RadioEvents->RxError ) )
{
RadioEvents->RxError( );
}
break;
case IRQ_CAD_CLEAR:
//!< Update operating mode state to a value lower than \ref MODE_STDBY_XOSC
SUBGRF_SetStandby( STDBY_RC );
if( ( RadioEvents != NULL ) && ( RadioEvents->CadDone != NULL ) )
{
RadioEvents->CadDone( false );
}
break;
case IRQ_CAD_DETECTED:
//!< Update operating mode state to a value lower than \ref MODE_STDBY_XOSC
SUBGRF_SetStandby( STDBY_RC );
if( ( RadioEvents != NULL ) && ( RadioEvents->CadDone != NULL ) )
{
RadioEvents->CadDone( true );
}
break;
case IRQ_RX_TX_TIMEOUT:
if( SUBGRF_GetOperatingMode( ) == MODE_TX )
{
/* ST_WORKAROUND_BEGIN: Reset DBG pin */
DBG_GPIO_RADIO_TX(RST);
/* ST_WORKAROUND_END */
TimerStop( &TxTimeoutTimer );
//!< Update operating mode state to a value lower than \ref MODE_STDBY_XOSC
SUBGRF_SetStandby( STDBY_RC );
if( ( RadioEvents != NULL ) && ( RadioEvents->TxTimeout != NULL ) )
{
RadioEvents->TxTimeout( );
}
}
else if( SUBGRF_GetOperatingMode( ) == MODE_RX )
{
/* ST_WORKAROUND_BEGIN: Reset DBG pin */
DBG_GPIO_RADIO_RX(RST);
/* ST_WORKAROUND_END */
TimerStop( &RxTimeoutTimer );
//!< Update operating mode state to a value lower than \ref MODE_STDBY_XOSC
SUBGRF_SetStandby( STDBY_RC );
if( ( RadioEvents != NULL ) && ( RadioEvents->RxTimeout != NULL ) )
{
RadioEvents->RxTimeout( );
}
}
break;
case IRQ_PREAMBLE_DETECTED:
MW_LOG( TS_ON, VLEVEL_M, "PRE OK\r\n" );
break;
case IRQ_SYNCWORD_VALID:
MW_LOG( TS_ON, VLEVEL_M, "SYNC OK\r\n" );
break;
case IRQ_HEADER_VALID:
MW_LOG( TS_ON, VLEVEL_M, "HDR OK\r\n" );
break;
case IRQ_HEADER_ERROR:
TimerStop( &RxTimeoutTimer );
if( SubgRf.RxContinuous == false )
{
//!< Update operating mode state to a value lower than \ref MODE_STDBY_XOSC
SUBGRF_SetStandby( STDBY_RC );
}
if( ( RadioEvents != NULL ) && ( RadioEvents->RxTimeout != NULL ) )
{
RadioEvents->RxTimeout( );
MW_LOG( TS_ON, VLEVEL_M, "HDR KO\r\n" );
}
break;
default:
break;
}
}
static void RadioTxPrbs(void )
{
SUBGRF_SetSwitch(SubgRf.AntSwitchPaSelect, RFSWITCH_TX);
Radio.Write(0x6B8, 0x2d); // sel mode prbs9 instead of preamble
SUBGRF_SetTxInfinitePreamble();
SUBGRF_SetTx(0x0fffff);
}
static void RadioTxCw( int8_t power )
{
uint8_t paselect = SUBGRF_SetRfTxPower( power );
SUBGRF_SetSwitch( paselect, RFSWITCH_TX);
SUBGRF_SetTxContinuousWave();
}
static void payload_integration( uint8_t *outBuffer, uint8_t *inBuffer, uint8_t size)
{
uint8_t prevInt=0;
uint8_t currBit;
uint8_t index_bit;
uint8_t index_byte;
uint8_t index_bit_out;
uint8_t index_byte_out;
int i=0;
for (i=0; i<size; i++)
{
/*reverse all inputs*/
inBuffer[i]=~inBuffer[i];
/*init outBuffer*/
outBuffer[i]=0;
}
for (i=0; i<size*8; i++)
{
/*index to take bit in inBuffer*/
index_bit = 7 - (i%8);
index_byte = i / 8;
/*index to place bit in outBuffer is shifted 1 bit rigth*/
index_bit_out = 7 - ((i+1)%8);
index_byte_out = (i+1) / 8;
/*extract current bit from input*/
currBit = (inBuffer[index_byte] >> index_bit) & 0x01;
/*integration*/
prevInt ^= currBit;
/* write result integration in output*/
outBuffer[index_byte_out]|= (prevInt << index_bit_out);
}
outBuffer[size] =(prevInt<<7) | (prevInt<<6) | (( (!prevInt) & 0x01)<<5) ;
}
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/