STM32CubeWL/Projects/NUCLEO-WL55JC/Examples/ADC/ADC_AnalogWatchdog/Src/main.c

590 lines
18 KiB
C

/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file ADC/ADC_AnalogWatchdog/Src/main.c
* @author MCD Application Team
* @brief This example provides a short description of how to use the ADC
* peripheral to perform conversions with analog watchdog and
* interruptions. Other peripherals used: DMA, TIM (ADC group regular
* conversions triggered by TIM, ADC group regular conversion data
* transferred by DMA).
******************************************************************************
* @attention
*
* Copyright (c) 2020 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* Definitions of data related to this example */
/* Definition of ADCx analog watchdog window thresholds */
/* Note: Set analog watchdog thresholds in order to be between steps of DAC */
/* voltage (if literal WAVEFORM_VOLTAGE_GENERATION_FOR_TEST is */
/* defined below). */
#define ADC_AWD_THRESHOLD_HIGH (__LL_ADC_DIGITAL_SCALE(LL_ADC_RESOLUTION_12B) * 5 /8) /* Analog watchdog threshold high: 5/8 of full range (4095 <=> Vdda=3.3V): 2559 <=> 2.06V */
#define ADC_AWD_THRESHOLD_LOW (__LL_ADC_DIGITAL_SCALE(LL_ADC_RESOLUTION_12B) * 1 /8) /* Analog watchdog threshold low: 1/8 of full range (4095 <=> Vdda=3.3V): 512 <=> 0.41V */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
ADC_HandleTypeDef hadc;
DMA_HandleTypeDef hdma_adc;
DAC_HandleTypeDef hdac;
/* USER CODE BEGIN PV */
/* Private variables ---------------------------------------------------------*/
/* Variables for ADC conversion data */
__IO uint16_t aADCxConvertedData[ADC_CONVERTED_DATA_BUFFER_SIZE]; /* ADC group regular conversion data (array of data) */
/* ADC handler declaration */
ADC_HandleTypeDef AdcHandle;
/* Variable to report ADC analog watchdog status: */
/* RESET <=> voltage into AWD window */
/* SET <=> voltage out of AWD window */
__IO uint8_t ubAnalogWatchdogStatus = RESET; /* Set into analog watchdog interrupt callback */
/* Variable to manage push button on board: interface between ExtLine interruption and main program */
__IO uint8_t ubUserButtonClickEvent = RESET; /* Event detection: Set after User Button interrupt */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_DAC_Init(void);
static void MX_ADC_Init(void);
/* USER CODE BEGIN PFP */
/* Private function prototypes -----------------------------------------------*/
static void Generate_waveform_SW_update_Config(void);
static void Generate_waveform_SW_update(void);
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_DMA_Init();
MX_DAC_Init();
MX_ADC_Init();
/* USER CODE BEGIN 2 */
/* Initialize LED on board */
BSP_LED_Init(LED2);
/* Configure User push-button (B1) in Interrupt mode */
BSP_PB_Init(BUTTON_SW1, BUTTON_MODE_EXTI);
/* Run the ADC calibration in single-ended mode */
if (HAL_ADCEx_Calibration_Start(&hadc) != HAL_OK)
{
/* Calibration Error */
Error_Handler();
}
/* Configure the DAC peripheral and generate a constant voltage of Vdda/2. */
Generate_waveform_SW_update_Config();
/*## Start ADC conversions ###############################################*/
/* Start ADC group regular conversion with DMA */
if (HAL_ADC_Start_DMA(&hadc,
(uint32_t *)aADCxConvertedData,
ADC_CONVERTED_DATA_BUFFER_SIZE
) != HAL_OK)
{
/* Start Error */
Error_Handler();
}
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
/* Turn-on/off LED2 in function of ADC conversion result */
/* - Turn-off if voltage is into AWD window */
/* - Turn-on if voltage is out of AWD window */
/* Variable of analog watchdog status is set into analog watchdog */
/* interrupt callback */
if (ubAnalogWatchdogStatus == RESET)
{
BSP_LED_Off(LED2);
}
else
{
BSP_LED_On(LED2);
}
/* For information: ADC conversion results are stored into array */
/* "aADCxConvertedValues" (for debug: check into watch window) */
/* Wait for event on push button to perform following actions */
while ((ubUserButtonClickEvent) == RESET)
{
}
/* Reset variable for next loop iteration (with debounce) */
HAL_Delay(200);
ubUserButtonClickEvent = RESET;
/* Modifies modifies the voltage level, to generate a waveform circular, */
/* shape of ramp: Voltage is increasing at each press on push button, */
/* from 0 to maximum range (Vdda) in 4 steps, then starting back from 0V. */
/* Voltage is updated incrementally at each call of this function. */
Generate_waveform_SW_update();
/* Wait for voltage settling time */
HAL_Delay(1);
/* Note: Variable "ubUserButtonClickEvent" is set into push button */
/* IRQ handler, refer to function "HAL_GPIO_EXTI_Callback()". */
/* Note: ADC conversions data are stored into array */
/* "aADCConvertedData" */
/* (for debug: see variable content into watch window). */
/* Reset analog watchdog status */
ubAnalogWatchdogStatus = RESET;
/* Wait for analog watchdog detection upon new voltage */
HAL_Delay(1);
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_MSI;
RCC_OscInitStruct.MSIState = RCC_MSI_ON;
RCC_OscInitStruct.MSICalibrationValue = RCC_MSICALIBRATION_DEFAULT;
RCC_OscInitStruct.MSIClockRange = RCC_MSIRANGE_8;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_MSI;
RCC_OscInitStruct.PLL.PLLM = RCC_PLLM_DIV4;
RCC_OscInitStruct.PLL.PLLN = 24;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2;
RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Configure the SYSCLKSource, HCLK, PCLK1 and PCLK2 clocks dividers
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK3|RCC_CLOCKTYPE_HCLK
|RCC_CLOCKTYPE_SYSCLK|RCC_CLOCKTYPE_PCLK1
|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.AHBCLK3Divider = RCC_SYSCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief ADC Initialization Function
* @param None
* @retval None
*/
static void MX_ADC_Init(void)
{
/* USER CODE BEGIN ADC_Init 0 */
/* USER CODE END ADC_Init 0 */
ADC_AnalogWDGConfTypeDef AnalogWDGConfig = {0};
ADC_ChannelConfTypeDef sConfig = {0};
/* USER CODE BEGIN ADC_Init 1 */
/* USER CODE END ADC_Init 1 */
/** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion)
*/
hadc.Instance = ADC;
hadc.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4;
hadc.Init.Resolution = ADC_RESOLUTION_12B;
hadc.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc.Init.ScanConvMode = ADC_SCAN_DISABLE;
hadc.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
hadc.Init.LowPowerAutoWait = DISABLE;
hadc.Init.LowPowerAutoPowerOff = DISABLE;
hadc.Init.ContinuousConvMode = ENABLE;
hadc.Init.NbrOfConversion = 1;
hadc.Init.DiscontinuousConvMode = DISABLE;
hadc.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
hadc.Init.DMAContinuousRequests = ENABLE;
hadc.Init.Overrun = ADC_OVR_DATA_OVERWRITTEN;
hadc.Init.SamplingTimeCommon1 = ADC_SAMPLETIME_79CYCLES_5;
hadc.Init.SamplingTimeCommon2 = ADC_SAMPLETIME_1CYCLE_5;
hadc.Init.OversamplingMode = DISABLE;
hadc.Init.TriggerFrequencyMode = ADC_TRIGGER_FREQ_HIGH;
if (HAL_ADC_Init(&hadc) != HAL_OK)
{
Error_Handler();
}
/** Configure Analog WatchDog 1
*/
AnalogWDGConfig.WatchdogNumber = ADC_ANALOGWATCHDOG_1;
AnalogWDGConfig.WatchdogMode = ADC_ANALOGWATCHDOG_SINGLE_REG;
AnalogWDGConfig.Channel = ADC_CHANNEL_6;
AnalogWDGConfig.ITMode = ENABLE;
AnalogWDGConfig.HighThreshold = ADC_AWD_THRESHOLD_HIGH;
AnalogWDGConfig.LowThreshold = ADC_AWD_THRESHOLD_LOW;
if (HAL_ADC_AnalogWDGConfig(&hadc, &AnalogWDGConfig) != HAL_OK)
{
Error_Handler();
}
/** Configure Regular Channel
*/
sConfig.Channel = ADC_CHANNEL_6;
sConfig.Rank = ADC_REGULAR_RANK_1;
sConfig.SamplingTime = ADC_SAMPLINGTIME_COMMON_1;
if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN ADC_Init 2 */
/* USER CODE END ADC_Init 2 */
}
/**
* @brief DAC Initialization Function
* @param None
* @retval None
*/
static void MX_DAC_Init(void)
{
/* USER CODE BEGIN DAC_Init 0 */
/* USER CODE END DAC_Init 0 */
DAC_ChannelConfTypeDef sConfig = {0};
/* USER CODE BEGIN DAC_Init 1 */
/* USER CODE END DAC_Init 1 */
/** DAC Initialization
*/
hdac.Instance = DAC;
if (HAL_DAC_Init(&hdac) != HAL_OK)
{
Error_Handler();
}
/** DAC channel OUT1 config
*/
sConfig.DAC_SampleAndHold = DAC_SAMPLEANDHOLD_DISABLE;
sConfig.DAC_Trigger = DAC_TRIGGER_NONE;
sConfig.DAC_OutputBuffer = DAC_OUTPUTBUFFER_ENABLE;
sConfig.DAC_ConnectOnChipPeripheral = DAC_CHIPCONNECT_ENABLE;
sConfig.DAC_UserTrimming = DAC_TRIMMING_FACTORY;
if (HAL_DAC_ConfigChannel(&hdac, &sConfig, DAC_CHANNEL_1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN DAC_Init 2 */
/* USER CODE END DAC_Init 2 */
}
/**
* Enable DMA controller clock
*/
static void MX_DMA_Init(void)
{
/* DMA controller clock enable */
__HAL_RCC_DMAMUX1_CLK_ENABLE();
__HAL_RCC_DMA1_CLK_ENABLE();
/* DMA interrupt init */
/* DMA1_Channel1_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Channel1_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA1_Channel1_IRQn);
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void)
{
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOA_CLK_ENABLE();
}
/* USER CODE BEGIN 4 */
/**
* @brief For this example, generate a waveform voltage on a spare DAC
* channel, so user has just to connect a wire between DAC channel
* (pin PA10) and ADC channel (pin PA10) to run this example.
* (this prevents the user from resorting to an external signal
* generator).
* This function configures the DAC and generates a constant voltage of Vdda/2.
* @note Voltage level can be modifying afterwards using function
* "Generate_waveform_SW_update()".
* @param None
* @retval None
*/
static void Generate_waveform_SW_update_Config(void)
{
/* Set DAC Channel data register: channel corresponding to ADC channel ADC_CHANNEL_6 */
/* Set DAC output to 1/2 of full range (4095 <=> Vdda=3.3V): 2048 <=> 1.65V */
if (HAL_DAC_SetValue(&hdac, DAC_CHANNEL_1, DAC_ALIGN_12B_R, DIGITAL_SCALE_12BITS/2) != HAL_OK)
{
/* Setting value Error */
Error_Handler();
}
/* Enable DAC Channel: channel corresponding to ADC channel ADC_CHANNEL_6 */
if (HAL_DAC_Start(&hdac, DAC_CHANNEL_1) != HAL_OK)
{
/* Start Error */
Error_Handler();
}
}
/**
* @brief For this example, generate a waveform voltage on a spare DAC
* channel, so user has just to connect a wire between DAC channel
* (pin PA10) and ADC channel (pin PA10) to run this example.
* (this prevents the user from resorting to an external signal
* generator).
* This function modifies the voltage level, to generate a
* waveform circular, shape of ramp: Voltage is increasing at each
* press on push button, from 0 to maximum range (Vdda) in 4 steps,
* then starting back from 0V.
* Voltage is updated incrementally at each call of this function.
* @note Preliminarily, DAC must be configured once using
* function "Generate_waveform_SW_update_Config()".
* @param None
* @retval None
*/
static void Generate_waveform_SW_update(void)
{
static uint8_t ub_dac_steps_count = 0; /* Count number of clicks: Incremented after User Button interrupt */
/* Set DAC voltage on channel corresponding to ADC_CHANNEL_6 */
/* in function of user button clicks count. */
/* Set DAC output on 5 voltage levels, successively to: */
/* - minimum of full range (0 <=> ground 0V) */
/* - 1/4 of full range (4095 <=> Vdda=3.3V): 1023 <=> 0.825V */
/* - 1/2 of full range (4095 <=> Vdda=3.3V): 2048 <=> 1.65V */
/* - 3/4 of full range (4095 <=> Vdda=3.3V): 3071 <=> 2.475V */
/* - maximum of full range (4095 <=> Vdda=3.3V) */
if (HAL_DAC_SetValue(&hdac,
DAC_CHANNEL_1,
DAC_ALIGN_12B_R,
((DIGITAL_SCALE_12BITS * ub_dac_steps_count) / 4)
) != HAL_OK)
{
/* Start Error */
Error_Handler();
}
/* Wait for voltage settling time */
HAL_Delay(1);
/* Manage ub_dac_steps_count to increment it in 4 steps and circularly. */
if (ub_dac_steps_count < 4)
{
ub_dac_steps_count++;
}
else
{
ub_dac_steps_count = 0;
}
}
/**
* @brief EXTI line detection callbacks
* @param GPIO_Pin: Specifies the pins connected EXTI line
* @retval None
*/
void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin)
{
if (GPIO_Pin == BUTTON_SW1_PIN)
{
/* Set variable to report push button event to main program */
ubUserButtonClickEvent = SET;
}
}
/**
* @brief Conversion complete callback in non blocking mode
* @param AdcHandle : ADC handle
* @note This example shows a simple way to report end of conversion
* and get conversion result. You can add your own implementation.
* @retval None
*/
void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef *AdcHandle)
{
}
/**
* @brief Conversion DMA half-transfer callback in non blocking mode
* @param hadc: ADC handle
* @retval None
*/
void HAL_ADC_ConvHalfCpltCallback(ADC_HandleTypeDef* hadc)
{
}
/**
* @brief Analog watchdog callback in non blocking mode.
* @param hadc: ADC handle
* @retval None
*/
void HAL_ADC_LevelOutOfWindowCallback(ADC_HandleTypeDef* hadc)
{
/* Set variable to report analog watchdog out of window status to main */
/* program. */
ubAnalogWatchdogStatus = SET;
}
/**
* @brief ADC error callback in non blocking mode
* (ADC conversion with interruption or transfer by DMA)
* @param hadc: ADC handle
* @retval None
*/
void HAL_ADC_ErrorCallback(ADC_HandleTypeDef *hadc)
{
/* In case of ADC error, call main error handler */
Error_Handler();
}
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
while(1)
{
/* Toggle LED2 */
BSP_LED_Off(LED2);
HAL_Delay(800);
BSP_LED_On(LED2);
HAL_Delay(10);
BSP_LED_Off(LED2);
HAL_Delay(180);
BSP_LED_On(LED2);
HAL_Delay(10);
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
Error_Handler();
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */