STM32CubeWL/Projects/NUCLEO-WL55JC/Examples/ADC/ADC_MultiChannelSingleConve.../Src/main.c

488 lines
16 KiB
C

/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file Examples/ADC/ADC_MultiChannelSingleConversion/Src/main.c
* @author MCD Application Team
* @brief This example provides a short description of how to use the ADC
* peripheral with sequencer, to convert several channels.
* Channels converted are 1 channel on external pin and 2 internal
* channels (VrefInt and temperature sensor).
* Moreover, voltage and temperature are then computed.
******************************************************************************
* @attention
*
* Copyright (c) 2020 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* Definitions of environment analog values */
/* Value of analog reference voltage (Vref+), connected to analog voltage */
/* supply Vdda (unit: mV). */
#define VDDA_APPLI (3300U)
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
ADC_HandleTypeDef hadc;
DMA_HandleTypeDef hdma_adc;
/* USER CODE BEGIN PV */
/* Private variables ---------------------------------------------------------*/
/* ADC handler declaration */
/* Variables for ADC conversion data */
__IO uint16_t aADCxConvertedData[ADC_CONVERTED_DATA_BUFFER_SIZE]; /* ADC group regular conversion data (array of data) */
/* Variable to report status of DMA transfer of ADC group regular conversions */
/* 0: DMA transfer is not completed */
/* 1: DMA transfer is completed */
/* 2: DMA transfer has not yet been started yet (initial state) */
__IO uint8_t ubDmaTransferStatus = 2; /* Variable set into DMA interruption callback */
/* Variable to manage push button on board: interface between ExtLine interruption and main program */
__IO uint8_t ubUserButtonClickEvent = RESET; /* Event detection: Set after User Button interrupt */
/* Variables for ADC conversion data computation to physical values */
__IO uint16_t uhADCxConvertedData_VoltageGPIO_mVolt = 0U; /* Value of voltage on GPIO pin (on which is mapped ADC channel) calculated from ADC conversion data (unit: mV) */
__IO uint16_t uhADCxConvertedData_VrefInt_mVolt = 0U; /* Value of internal voltage reference VrefInt calculated from ADC conversion data (unit: mV) */
__IO int16_t hADCxConvertedData_Temperature_DegreeCelsius = 0U; /* Value of temperature calculated from ADC conversion data (unit: degree Celsius) */
__IO uint16_t uhADCxConvertedData_VrefAnalog_mVolt = 0U; /* Value of analog reference voltage (Vref+), connected to analog voltage supply Vdda, calculated from ADC conversion data (unit: mV) */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_ADC_Init(void);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
uint32_t tmp_index_adc_converted_data = 0;
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_DMA_Init();
MX_ADC_Init();
/* USER CODE BEGIN 2 */
for (tmp_index_adc_converted_data = 0; tmp_index_adc_converted_data < ADC_CONVERTED_DATA_BUFFER_SIZE; tmp_index_adc_converted_data++)
{
aADCxConvertedData[tmp_index_adc_converted_data] = VAR_CONVERTED_DATA_INIT_VALUE;
}
/* Initialize LED on board */
BSP_LED_Init(LED2);
/* Configure User push-button (B1) in Interrupt mode */
BSP_PB_Init(BUTTON_SW1, BUTTON_MODE_EXTI);
/* Run the ADC calibration */
if (HAL_ADCEx_Calibration_Start(&hadc) != HAL_OK)
{
/* Calibration Error */
Error_Handler();
}
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
/*## Start ADC conversions ###############################################*/
/* Start ADC group regular conversion with DMA */
if (HAL_ADC_Start_DMA(&hadc,
(uint32_t *)aADCxConvertedData,
ADC_CONVERTED_DATA_BUFFER_SIZE
) != HAL_OK)
{
/* ADC conversion start error */
Error_Handler();
}
while (1)
{
/* Wait for event on push button to perform following actions */
while ((ubUserButtonClickEvent) == RESET)
{
}
/* Reset variable for next loop iteration (with debounce) */
HAL_Delay(200);
ubUserButtonClickEvent = RESET;
/* Start ADC conversion */
/* Since sequencer is enabled in discontinuous mode, this will perform */
/* the conversion of the next rank in sequencer. */
/* Note: For this example, conversion is triggered by software start, */
/* therefore "HAL_ADC_Start()" must be called for each conversion. */
/* Since DMA transfer has been initiated previously by function */
/* "HAL_ADC_Start_DMA()", this function will keep DMA transfer */
/* active. */
if (HAL_ADC_Start(&hadc) != HAL_OK)
{
Error_Handler();
}
/* Wait for ADC conversion and DMA transfer completion (update of variable ubDmaTransferStatus) */
HAL_Delay(10);
/* Check whether ADC has converted all ranks of the sequence */
if (ubDmaTransferStatus == 1)
{
/* Computation of ADC conversions raw data to physical values */
/* using LL ADC driver helper macro. */
/* Note: ADC results are transferred into array "aADCxConvertedData" */
/* in the order of their rank in ADC sequencer. */
uhADCxConvertedData_VoltageGPIO_mVolt = __LL_ADC_CALC_DATA_TO_VOLTAGE(VDDA_APPLI, aADCxConvertedData[0], LL_ADC_RESOLUTION_12B);
uhADCxConvertedData_VrefInt_mVolt = __LL_ADC_CALC_DATA_TO_VOLTAGE(VDDA_APPLI, aADCxConvertedData[1], LL_ADC_RESOLUTION_12B);
hADCxConvertedData_Temperature_DegreeCelsius = __LL_ADC_CALC_TEMPERATURE(VDDA_APPLI, aADCxConvertedData[2], LL_ADC_RESOLUTION_12B);
/* Optionally, for this example purpose, calculate analog reference */
/* voltage (Vref+) from ADC conversion of internal voltage reference */
/* VrefInt. */
/* This voltage should correspond to value of literal "VDDA_APPLI". */
/* Note: This calculation can be performed when value of voltage Vref+ */
/* is unknown in the application. */
uhADCxConvertedData_VrefAnalog_mVolt = __LL_ADC_CALC_VREFANALOG_VOLTAGE(aADCxConvertedData[1], LL_ADC_RESOLUTION_12B);
/* Clear DMA buffer when filled before refilling it */
for (tmp_index_adc_converted_data = 0; tmp_index_adc_converted_data < ADC_CONVERTED_DATA_BUFFER_SIZE; tmp_index_adc_converted_data++)
{
aADCxConvertedData[tmp_index_adc_converted_data] = VAR_CONVERTED_DATA_INIT_VALUE;
}
/* Update status variable of DMA transfer */
ubDmaTransferStatus = 0;
}
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
/* Note: LED state depending on DMA transfer status is set into DMA */
/* IRQ handler, refer to functions "HAL_ADC_ConvCpltCallback()" */
/* and "HAL_ADC_ConvHalfCpltCallback()". */
/* Note: ADC conversions data are stored into array */
/* "aADCxConvertedData" */
/* (for debug: see variable content into watch window). */
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI|RCC_OSCILLATORTYPE_MSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.MSIState = RCC_MSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.MSICalibrationValue = RCC_MSICALIBRATION_DEFAULT;
RCC_OscInitStruct.MSIClockRange = RCC_MSIRANGE_8;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_MSI;
RCC_OscInitStruct.PLL.PLLM = RCC_PLLM_DIV4;
RCC_OscInitStruct.PLL.PLLN = 24;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2;
RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Configure the SYSCLKSource, HCLK, PCLK1 and PCLK2 clocks dividers
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK3|RCC_CLOCKTYPE_HCLK
|RCC_CLOCKTYPE_SYSCLK|RCC_CLOCKTYPE_PCLK1
|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.AHBCLK3Divider = RCC_SYSCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief ADC Initialization Function
* @param None
* @retval None
*/
static void MX_ADC_Init(void)
{
/* USER CODE BEGIN ADC_Init 0 */
/* USER CODE END ADC_Init 0 */
ADC_ChannelConfTypeDef sConfig = {0};
/* USER CODE BEGIN ADC_Init 1 */
/* USER CODE END ADC_Init 1 */
/** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion)
*/
hadc.Instance = ADC;
hadc.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV1;
hadc.Init.Resolution = ADC_RESOLUTION_12B;
hadc.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc.Init.ScanConvMode = ADC_SCAN_ENABLE;
hadc.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
hadc.Init.LowPowerAutoWait = DISABLE;
hadc.Init.LowPowerAutoPowerOff = DISABLE;
hadc.Init.ContinuousConvMode = DISABLE;
hadc.Init.NbrOfConversion = 3;
hadc.Init.DiscontinuousConvMode = ENABLE;
hadc.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
hadc.Init.DMAContinuousRequests = DISABLE;
hadc.Init.Overrun = ADC_OVR_DATA_OVERWRITTEN;
hadc.Init.SamplingTimeCommon1 = ADC_SAMPLETIME_39CYCLES_5;
hadc.Init.SamplingTimeCommon2 = ADC_SAMPLETIME_160CYCLES_5;
hadc.Init.OversamplingMode = DISABLE;
hadc.Init.TriggerFrequencyMode = ADC_TRIGGER_FREQ_HIGH;
if (HAL_ADC_Init(&hadc) != HAL_OK)
{
Error_Handler();
}
/** Configure Regular Channel
*/
sConfig.Channel = ADC_CHANNEL_4;
sConfig.Rank = ADC_REGULAR_RANK_1;
sConfig.SamplingTime = ADC_SAMPLINGTIME_COMMON_1;
if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK)
{
Error_Handler();
}
/** Configure Regular Channel
*/
sConfig.Channel = ADC_CHANNEL_VREFINT;
sConfig.Rank = ADC_REGULAR_RANK_2;
sConfig.SamplingTime = ADC_SAMPLINGTIME_COMMON_2;
if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK)
{
Error_Handler();
}
/** Configure Regular Channel
*/
sConfig.Channel = ADC_CHANNEL_TEMPSENSOR;
sConfig.Rank = ADC_REGULAR_RANK_3;
if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN ADC_Init 2 */
/* USER CODE END ADC_Init 2 */
}
/**
* Enable DMA controller clock
*/
static void MX_DMA_Init(void)
{
/* DMA controller clock enable */
__HAL_RCC_DMAMUX1_CLK_ENABLE();
__HAL_RCC_DMA1_CLK_ENABLE();
/* DMA interrupt init */
/* DMA1_Channel1_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Channel1_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA1_Channel1_IRQn);
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void)
{
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOB_CLK_ENABLE();
}
/* USER CODE BEGIN 4 */
/******************************************************************************/
/* USER IRQ HANDLER TREATMENT */
/******************************************************************************/
/**
* @brief EXTI line detection callbacks
* @param GPIO_Pin: Specifies the pins connected EXTI line
* @retval None
*/
void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin)
{
if (GPIO_Pin == BUTTON_SW1_PIN)
{
/* Set variable to report push button event to main program */
ubUserButtonClickEvent = SET;
}
}
/**
* @brief Conversion complete callback in non blocking mode
* @param hadc: ADC handle
* @note This example shows a simple way to report end of conversion
* and get conversion result. You can add your own implementation.
* @retval None
*/
void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef *hadc)
{
/* Update status variable of DMA transfer */
ubDmaTransferStatus = 1;
/* Set LED depending on DMA transfer status */
/* - Turn-on if DMA transfer is completed */
/* - Turn-off if DMA transfer is not completed */
BSP_LED_On(LED2);
}
/**
* @brief Conversion DMA half-transfer callback in non blocking mode
* @note This example shows a simple way to report end of conversion
* and get conversion result. You can add your own implementation.
* @retval None
*/
void HAL_ADC_ConvHalfCpltCallback(ADC_HandleTypeDef *hadc)
{
/* Set LED depending on DMA transfer status */
/* - Turn-on if DMA transfer is completed */
/* - Turn-off if DMA transfer is not completed */
BSP_LED_Off(LED2);
}
/**
* @brief ADC error callback in non blocking mode
* (ADC conversion with interruption or transfer by DMA)
* @param hadc: ADC handle
* @retval None
*/
void HAL_ADC_ErrorCallback(ADC_HandleTypeDef *hadc)
{
/* In case of ADC error, call main error handler */
Error_Handler();
}
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
while(1)
{
/* Toggle LED2 */
BSP_LED_Off(LED2);
HAL_Delay(800);
BSP_LED_On(LED2);
HAL_Delay(10);
BSP_LED_Off(LED2);
HAL_Delay(180);
BSP_LED_On(LED2);
HAL_Delay(10);
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
Error_Handler();
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */