STM32CubeWL/Projects/NUCLEO-WL55JC/Examples/CRYP/CRYP_DMA/Src/main.c

555 lines
16 KiB
C

/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file CRYP/CRYP_DMA/Src/main.c
* @author MCD Application Team
* @brief This example provides a short description of how to use the CRYPTO
* peripheral to encrypt and decrypt data using CRYP Algorithm with
* AES ECB chaining mode.
******************************************************************************
* @attention
*
* Copyright (c) 2020 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
CRYP_HandleTypeDef hcryp;
__ALIGN_BEGIN static const uint32_t pKeyAES[4] __ALIGN_END = {
0x2B7E1516,0x28AED2A6,0xABF71588,0x09CF4F3C};
DMA_HandleTypeDef hdma_aes_in;
DMA_HandleTypeDef hdma_aes_out;
/* USER CODE BEGIN PV */
/* Private define ------------------------------------------------------------*/
#define KEY_SIZE 128 /* Key size in bits */
/* The size of the plaintext in Words */
#define PLAINTEXT_SIZE ((uint32_t)16)
#define AES_TEXT_SIZE ((uint32_t)16)
#define ECB 1
#define CBC 2
#define CTR 3
/* Plaintext */
uint32_t aPlaintext[AES_TEXT_SIZE] =
{ 0x6BC1BEE2 ,0x2E409F96 ,0xE93D7E11 ,0x7393172A ,
0xAE2D8A57 ,0x1E03AC9C ,0x9EB76FAC ,0x45AF8E51 ,
0x30C81C46 ,0xA35CE411 ,0xE5FBC119 ,0x1A0A52EF ,
0xF69F2445 ,0xDF4F9B17 ,0xAD2B417B ,0xE66C3710};
/* Ciphertext */
uint32_t aEncryptedtextExpected[AES_TEXT_SIZE] =
{0x3AD77BB4 ,0x0D7A3660 ,0xA89ECAF3 ,0x2466EF97 ,
0xF5D3D585 ,0x03B9699D ,0xE785895A ,0x96FDBAAF ,
0x43B1CD7F ,0x598ECE23 ,0x881B00E3 ,0xED030688 ,
0x7B0C785E ,0x27E8AD3F ,0x82232071 ,0x04725DD4};
/* Used for storing the encrypted text */
uint32_t aEncryptedText[AES_TEXT_SIZE] = {0};
/* Used for storing the decrypted text */
uint32_t aDecryptedText[PLAINTEXT_SIZE] = {0};
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_DMA_Init(void);
static void MX_AES_Init(void);
/* USER CODE BEGIN PFP */
/* Private function prototypes -----------------------------------------------*/
static void Display_PlainData(uint32_t datalength);
static void Display_EncryptedData(uint8_t mode, uint16_t keysize, uint32_t datalength);
static void Display_DecryptedData(uint8_t mode, uint16_t keysize, uint32_t datalength);
#if defined(__GNUC__) && !defined(__ARMCC_VERSION)
extern void initialise_monitor_handles(void);
#endif
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
#if defined(__GNUC__) && !defined(__ARMCC_VERSION)
initialise_monitor_handles();
printf("Semihosting Test...\n\r");
#endif
#if (USE_VCP_CONNECTION == 1)
COM_InitTypeDef COM_Init;
#endif
/* STM32WLxx HAL library initialization:
- Configure the Flash prefetch
- Systick timer is configured by default as source of time base, but user
can eventually implement his proper time base source (a general purpose
timer for example or other time source), keeping in mind that Time base
duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and
handled in milliseconds basis.
- Set NVIC Group Priority to 4
- Low Level Initialization
*/
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_DMA_Init();
MX_AES_Init();
/* USER CODE BEGIN 2 */
/* Configure LEDs */
BSP_LED_Init(LED2);
BSP_LED_Init(LED3);
#if (USE_VCP_CONNECTION == 1)
/* Configure COM port */
COM_Init.BaudRate = 115200;
COM_Init.WordLength = COM_WORDLENGTH_8B;
COM_Init.StopBits = COM_STOPBITS_1;
COM_Init.Parity = COM_PARITY_NONE;
COM_Init.HwFlowCtl = COM_HWCONTROL_NONE;
if (BSP_COM_Init(COM1, &COM_Init) != BSP_ERROR_NONE)
{
Error_Handler();
}
if (BSP_COM_SelectLogPort(COM1) != BSP_ERROR_NONE)
{
Error_Handler();
}
#endif
/*#######################################################################*/
/* */
/*##- DMA-based AES 128 ECB encryption #############*/
/* */
/*#######################################################################*/
/*##- Configure the CRYP peripheral ######################################*/
if (HAL_CRYP_DeInit(&hcryp) != HAL_OK)
{
Error_Handler();
}
hcryp.Instance = AES;
hcryp.Init.DataType = CRYP_DATATYPE_32B;
hcryp.Init.KeySize = CRYP_KEYSIZE_128B;
hcryp.Init.Algorithm = CRYP_AES_ECB;
hcryp.Init.pKey = (uint32_t *)pKeyAES;
hcryp.Init.DataWidthUnit = CRYP_DATAWIDTHUNIT_WORD;
if (HAL_CRYP_Init(&hcryp) != HAL_OK)
{
/* Initialization Error */
Error_Handler();
}
/* Display Plain Data*/
Display_PlainData(PLAINTEXT_SIZE);
HAL_Delay(1);
if (HAL_CRYP_Encrypt_DMA(&hcryp, aPlaintext, PLAINTEXT_SIZE, aEncryptedText) != HAL_OK)
{
/* Processing Error */
Error_Handler();
}
/* Before starting a new process, the current state of the peripheral is checked;
as long as the state is not set back to READY, no new ciphering processing
can be started.
For simplicity's sake, this example is just waiting till the end of the
process, but application may perform other tasks while cihering operation
is ongoing. */
while (HAL_CRYP_GetState(&hcryp) != HAL_CRYP_STATE_READY)
{
}
/* Display encrypted Data */
Display_EncryptedData(ECB, 128, AES_TEXT_SIZE);
/*##- Compare the encrypted text with the expected one #####################*/
if(memcmp(aEncryptedText, aEncryptedtextExpected, PLAINTEXT_SIZE*4) != 0)
{
Error_Handler();
}
else
{
/* Correct encryption */
}
/*#######################################################################*/
/* */
/*##- DMA-based AES 128 ECB decryption #############*/
/* */
/*#######################################################################*/
/* Deinitialize Crypto peripheral */
HAL_CRYP_DeInit(&hcryp);
if(HAL_CRYP_Init(&hcryp) != HAL_OK)
{
/* Initialization Error */
Error_Handler();
}
if(HAL_CRYP_Decrypt_DMA(&hcryp, aEncryptedtextExpected, PLAINTEXT_SIZE, aDecryptedText) != HAL_OK)
{
/* Processing Error */
Error_Handler();
}
/* Before starting a new process, the current state of the peripheral is checked;
as long as the state is not set back to READY, no new ciphering processing
can be started.
For simplicity's sake, this example is just waiting till the end of the
process, but application may perform other tasks while cihering operation
is ongoing. */
while (HAL_CRYP_GetState(&hcryp) != HAL_CRYP_STATE_READY)
{
}
/* Display decrypted Data */
Display_DecryptedData(ECB, 128, PLAINTEXT_SIZE);
/*##- Compare the decrypted text with the expected one #####################*/
if(memcmp(aDecryptedText, aPlaintext, PLAINTEXT_SIZE*4) != 0)
{
Error_Handler();
}
else
{
/* Correct decryption */
}
HAL_Delay(100);
printf("======================================================\n");
printf("\n\r DMA-based AES 128 ECB encryption/decryption done.\n");
printf("\n\r No issue detected.\n");
HAL_Delay(100);
/* Turn LED2 on */
BSP_LED_On(LED2);
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_MSI;
RCC_OscInitStruct.MSIState = RCC_MSI_ON;
RCC_OscInitStruct.MSICalibrationValue = RCC_MSICALIBRATION_DEFAULT;
RCC_OscInitStruct.MSIClockRange = RCC_MSIRANGE_11;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Configure the SYSCLKSource, HCLK, PCLK1 and PCLK2 clocks dividers
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK3|RCC_CLOCKTYPE_HCLK
|RCC_CLOCKTYPE_SYSCLK|RCC_CLOCKTYPE_PCLK1
|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_MSI;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.AHBCLK3Divider = RCC_SYSCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief AES Initialization Function
* @param None
* @retval None
*/
static void MX_AES_Init(void)
{
/* USER CODE BEGIN AES_Init 0 */
/* USER CODE END AES_Init 0 */
/* USER CODE BEGIN AES_Init 1 */
/* USER CODE END AES_Init 1 */
hcryp.Instance = AES;
hcryp.Init.DataType = CRYP_DATATYPE_32B;
hcryp.Init.KeySize = CRYP_KEYSIZE_128B;
hcryp.Init.pKey = (uint32_t *)pKeyAES;
hcryp.Init.Algorithm = CRYP_AES_ECB;
hcryp.Init.DataWidthUnit = CRYP_DATAWIDTHUNIT_WORD;
hcryp.Init.HeaderWidthUnit = CRYP_HEADERWIDTHUNIT_WORD;
hcryp.Init.KeyIVConfigSkip = CRYP_KEYIVCONFIG_ALWAYS;
if (HAL_CRYP_Init(&hcryp) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN AES_Init 2 */
/* USER CODE END AES_Init 2 */
}
/**
* Enable DMA controller clock
*/
static void MX_DMA_Init(void)
{
/* DMA controller clock enable */
__HAL_RCC_DMAMUX1_CLK_ENABLE();
__HAL_RCC_DMA1_CLK_ENABLE();
/* DMA interrupt init */
/* DMA1_Channel1_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Channel1_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA1_Channel1_IRQn);
/* DMA1_Channel2_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Channel2_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA1_Channel2_IRQn);
}
/* USER CODE BEGIN 4 */
/**
* @brief Display Plain Data
* @param datalength: length of the data to display
* @retval None
*/
static void Display_PlainData(uint32_t datalength)
{
uint32_t BufferCounter = 0;
uint32_t count = 0;
uint8_t * ptr = (uint8_t *)aPlaintext;
HAL_Delay(100);
printf("\n\r =============================================================\n\r");
printf(" ================== Crypt Using HW Cryp =====================\n\r");
printf(" =============================================================\n\r");
printf(" ---------------------------------------\n\r");
printf(" Plain Data :\n\r");
printf(" ---------------------------------------\n\r");
HAL_Delay(100);
for (BufferCounter = 0; BufferCounter < datalength*4; BufferCounter++)
{
printf("[0x%02X]", *ptr++);
count++;
if (count == 16)
{
count = 0;
printf(" Block %ld \n\r", BufferCounter / 16);
}
}
}
/**
* @brief Display Encrypted Data
* @param mode: chaining mode
* @param keysize: AES key size used
* @param datalength: length of the data to display
* @retval None
*/
static void Display_EncryptedData(uint8_t mode, uint16_t keysize, uint32_t datalength)
{
uint32_t BufferCounter = 0;
uint32_t count = 0;
uint8_t * ptr = (uint8_t *)aEncryptedText;
printf("\n\r =======================================\n\r");
printf(" Encrypted Data with AES %d Mode ", keysize);
if (mode == ECB)
{
printf("ECB\n\r");
}
else if (mode == CBC)
{
printf("CBC\n\r");
}
else /* if(mode == CTR)*/
{
printf("CTR\n\r");
}
printf(" ---------------------------------------\n\r");
for (BufferCounter = 0; BufferCounter < datalength*4; BufferCounter++)
{
printf("[0x%02X]", *ptr++);
count++;
if (count == 16)
{
count = 0;
printf(" Block %ld \n\r", BufferCounter / 16);
}
}
}
/**
* @brief Display Decrypted Data
* @param mode: chaining mode
* @param keysize: AES key size used
* @param datalength: length of the data to display
* @retval None
*/
static void Display_DecryptedData(uint8_t mode, uint16_t keysize, uint32_t datalength)
{
uint32_t BufferCounter = 0;
uint32_t count = 0;
uint8_t * ptr = (uint8_t *)aDecryptedText;
printf("\n\r =======================================\n\r");
printf(" Decrypted Data with AES %d Mode ", keysize);
if (mode == ECB)
{
printf("ECB\n\r");
}
else if (mode == CBC)
{
printf("CBC\n\r");
}
else /* if(mode == CTR)*/
{
printf("CTR\n\r");
}
printf(" ---------------------------------------\n\r");
for (BufferCounter = 0; BufferCounter < datalength*4; BufferCounter++)
{
printf("[0x%02X]", *ptr++);
count++;
if (count == 16)
{
count = 0;
printf(" Block %ld \n\r", BufferCounter / 16);
}
}
}
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
printf("\n\r Error Detected...\n ");
while(1)
{
/* Toggle LED3 */
BSP_LED_Toggle(LED3);
HAL_Delay(200);
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */