STM32CubeWL/Projects/NUCLEO-WL55JC/Examples/I2C/I2C_WakeUpFromStop/Src/main.c

551 lines
16 KiB
C

/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file I2C/I2C_WakeUpFromStop/Src/main.c
* @author MCD Application Team
* @brief This sample code shows how to use STM32WLxx I2C HAL API to transmit
* and receive a data buffer with a communication process in stop mode
* based on IT transfer.
* The communication is done using 2 Boards.
******************************************************************************
* @attention
*
* Copyright (c) 2020 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* Uncomment this line to use the board as master, if not it is used as slave */
//#define MASTER_BOARD
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
I2C_HandleTypeDef hi2c1;
/* USER CODE BEGIN PV */
/* Buffer used for transmission */
uint8_t aTxBuffer[] = " ****I2C_TwoBoards communication wake up from stop mode based on IT**** ****I2C_TwoBoards communication wake up from stop mode based on IT**** ****I2C_TwoBoards communication wake up from stop mode based on IT**** ";
/* Buffer used for reception */
uint8_t aRxBuffer[RXBUFFERSIZE];
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_I2C1_Init(void);
/* USER CODE BEGIN PFP */
/* Private function prototypes -----------------------------------------------*/
static uint16_t Buffercmp(uint8_t* pBuffer1, uint8_t* pBuffer2, uint16_t BufferLength);
#ifndef MASTER_BOARD
static void EXTI23_Enable_IT(void);
#endif
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_I2C1_Init();
/* USER CODE BEGIN 2 */
/* Configure LED2, LED3 and LED1 */
BSP_LED_Init(LED2);
BSP_LED_Init(LED3);
BSP_LED_Init(LED1);
#ifdef MASTER_BOARD
/* Configure User push-button (B1) */
BSP_PB_Init(BUTTON_SW1,BUTTON_MODE_GPIO);
/* Wait for User push-button (B1) press before starting the Communication */
while (BSP_PB_GetState(BUTTON_SW1) != GPIO_PIN_RESET)
{
}
/* Wait for User push-button (B1) release before starting the Communication */
while (BSP_PB_GetState(BUTTON_SW1) != GPIO_PIN_SET)
{
}
/* The board sends the message and expects to receive it back */
/*##- Start the transmission process #####################################*/
/* While the I2C in reception process, user can transmit data through
"aTxBuffer" buffer */
do
{
if(HAL_I2C_Master_Transmit_IT(&hi2c1, (uint16_t)I2C_ADDRESS, (uint8_t*)aTxBuffer, TXBUFFERSIZE)!= HAL_OK)
{
/* Error_Handler() function is called when error occurs. */
Error_Handler();
}
/*##- Wait for the end of the transfer #################################*/
/* Before starting a new communication transfer, you need to check the current
state of the peripheral; if it's busy you need to wait for the end of current
transfer before starting a new one.
For simplicity reasons, this example is just waiting till the end of the
transfer, but application may perform other tasks while transfer operation
is ongoing. */
while (HAL_I2C_GetState(&hi2c1) != HAL_I2C_STATE_READY)
{
}
/* When Acknowledge failure occurs (Slave don't acknowledge it's address)
Master restarts communication */
}
while(HAL_I2C_GetError(&hi2c1) == HAL_I2C_ERROR_AF);
/* Wait for User push-button (B1) press before starting the Communication */
while (BSP_PB_GetState(BUTTON_SW1) != GPIO_PIN_RESET)
{
}
/* Wait for User push-button (B1) release before starting the Communication */
while (BSP_PB_GetState(BUTTON_SW1) != GPIO_PIN_SET)
{
}
/*##- Put I2C peripheral in reception process ###########################*/
do
{
if(HAL_I2C_Master_Receive_IT(&hi2c1, (uint16_t)I2C_ADDRESS, (uint8_t *)aRxBuffer, RXBUFFERSIZE) != HAL_OK)
{
/* Error_Handler() function is called when error occurs. */
Error_Handler();
}
/*##- Wait for the end of the transfer #################################*/
/* Before starting a new communication transfer, you need to check the current
state of the peripheral; if it's busy you need to wait for the end of current
transfer before starting a new one.
For simplicity reasons, this example is just waiting till the end of the
transfer, but application may perform other tasks while transfer operation
is ongoing. */
while (HAL_I2C_GetState(&hi2c1) != HAL_I2C_STATE_READY)
{
}
/* When Acknowledge failure occurs (Slave don't acknowledge it's address)
Master restarts communication */
}
while(HAL_I2C_GetError(&hi2c1) == HAL_I2C_ERROR_AF);
#else
/*## Unmask wakeup with Interrupt request from I2C1 */
EXTI23_Enable_IT();
/*##- Enable I2C peripheral in wake up from stop mode ###################*/
HAL_I2CEx_EnableWakeUp(&hi2c1);
/*##- Put I2C peripheral in reception process ###########################*/
if(HAL_I2C_Slave_Receive_IT(&hi2c1, (uint8_t *)aRxBuffer, RXBUFFERSIZE) != HAL_OK)
{
/* Transfer error in reception process */
Error_Handler();
}
/* enter stop mode */
/* Turn LED1 on */
BSP_LED_On(LED1);
/* Configure the WakeUp clock source */
/* Configure the WakeUp clock source */
__HAL_RCC_WAKEUPSTOP_CLK_CONFIG(RCC_STOP_WAKEUPCLOCK_HSI);
HAL_PWR_EnterSTOPMode(PWR_LOWPOWERREGULATOR_ON, PWR_STOPENTRY_WFI);
/* ... STOP mode ... */
/* Wake Up from Stop mode */
/* Turn LED1 off */
BSP_LED_Off(LED1);
/*##- Wait for the end of the transfer ###################################*/
/* Before starting a new communication transfer, you need to check the current
state of the peripheral; if it's busy you need to wait for the end of current
transfer before starting a new one.
For simplicity reasons, this example is just waiting till the end of the
transfer, but application may perform other tasks while transfer operation
is ongoing. */
while (HAL_I2C_GetState(&hi2c1) != HAL_I2C_STATE_READY)
{
}
/*##- Start the transmission process #####################################*/
/* While the I2C in reception process, user can transmit data through
"aTxBuffer" buffer */
if(HAL_I2C_Slave_Transmit_IT(&hi2c1, (uint8_t*)aTxBuffer, TXBUFFERSIZE)!= HAL_OK)
{
/* Transfer error in transmission process */
Error_Handler();
}
/* enter stop mode */
/* Turn LED1 on */
BSP_LED_On(LED1);
HAL_PWR_EnterSTOPMode(PWR_LOWPOWERREGULATOR_ON, PWR_STOPENTRY_WFI);
/* ... STOP mode ... */
/* Wake Up from Stop mode */
/* Turn LED1 off */
BSP_LED_Off(LED1);
#endif /* MASTER_BOARD */
/*##- Wait for the end of the transfer ###################################*/
/* Before starting a new communication transfer, you need to check the current
state of the peripheral; if it's busy you need to wait for the end of current
transfer before starting a new one.
For simplicity reasons, this example is just waiting till the end of the
transfer, but application may perform other tasks while transfer operation
is ongoing. */
while (HAL_I2C_GetState(&hi2c1) != HAL_I2C_STATE_READY)
{
}
/*##- Compare the sent and received buffers ##############################*/
if(Buffercmp((uint8_t*)aTxBuffer,(uint8_t*)aRxBuffer,RXBUFFERSIZE))
{
/* Processing Error */
Error_Handler();
}
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE2);
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Configure the SYSCLKSource, HCLK, PCLK1 and PCLK2 clocks dividers
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK3|RCC_CLOCKTYPE_HCLK
|RCC_CLOCKTYPE_SYSCLK|RCC_CLOCKTYPE_PCLK1
|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.AHBCLK3Divider = RCC_SYSCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief I2C1 Initialization Function
* @param None
* @retval None
*/
static void MX_I2C1_Init(void)
{
/* USER CODE BEGIN I2C1_Init 0 */
/* USER CODE END I2C1_Init 0 */
/* USER CODE BEGIN I2C1_Init 1 */
/* USER CODE END I2C1_Init 1 */
hi2c1.Instance = I2C1;
hi2c1.Init.Timing = 0x00100107;
hi2c1.Init.OwnAddress1 = I2C_ADDRESS;
hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
hi2c1.Init.OwnAddress2 = 0;
hi2c1.Init.OwnAddress2Masks = I2C_OA2_NOMASK;
hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
if (HAL_I2C_Init(&hi2c1) != HAL_OK)
{
Error_Handler();
}
/** Configure Analogue filter
*/
if (HAL_I2CEx_ConfigAnalogFilter(&hi2c1, I2C_ANALOGFILTER_ENABLE) != HAL_OK)
{
Error_Handler();
}
/** Configure Digital filter
*/
if (HAL_I2CEx_ConfigDigitalFilter(&hi2c1, 0) != HAL_OK)
{
Error_Handler();
}
/** I2C Fast mode Plus enable
*/
HAL_I2CEx_EnableFastModePlus(I2C_FASTMODEPLUS_I2C1);
/* USER CODE BEGIN I2C1_Init 2 */
/* USER CODE END I2C1_Init 2 */
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void)
{
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOB_CLK_ENABLE();
}
/* USER CODE BEGIN 4 */
/**
* @brief Tx Transfer completed callback.
* @param I2cHandle: I2C handle
* @note This example shows a simple way to report end of IT Tx transfer, and
* you can add your own implementation.
* @retval None
*/
#ifdef MASTER_BOARD
void HAL_I2C_MasterTxCpltCallback(I2C_HandleTypeDef *I2cHandle)
{
/* Toggle LED2: Transfer in transmission process is correct */
BSP_LED_Toggle(LED2);
}
#else
void HAL_I2C_SlaveTxCpltCallback(I2C_HandleTypeDef *I2cHandle)
{
/* Restore config: clock, GPIO... */
SystemClock_Config();
/* Restore GPIO configuration */
BSP_LED_Init(LED2);
BSP_LED_Init(LED1);
/* Wake Up from Stop Mode */
/* Turn LED1 off */
BSP_LED_Off(LED1);
/* Turn off LED2: Transfer in transmission process is correct */
BSP_LED_Off(LED2);
}
#endif /* MASTER_BOARD */
/**
* @brief Rx Transfer completed callback.
* @param I2cHandle: I2C handle
* @note This example shows a simple way to report end of IT Rx transfer, and
* you can add your own implementation.
* @retval None
*/
#ifdef MASTER_BOARD
void HAL_I2C_MasterRxCpltCallback(I2C_HandleTypeDef *I2cHandle)
{
/* Toggle LED2: Transfer in reception process is correct */
BSP_LED_Toggle(LED2);
}
#else
void HAL_I2C_SlaveRxCpltCallback(I2C_HandleTypeDef *I2cHandle)
{
/* Restore config: clock, GPIO... */
SystemClock_Config();
/* Restore GPIO configuration */
BSP_LED_Init(LED2);
BSP_LED_Init(LED1);
/* Wake Up from Stop Mode */
/* Turn LED1 off */
BSP_LED_Off(LED1);
/* Turn On LED2: Transfer in reception process is correct */
BSP_LED_On(LED2);
}
#endif /* MASTER_BOARD */
/**
* @brief I2C error callbacks.
* @param I2cHandle: I2C handle
* @note This example shows a simple way to report transfer error, and you can
* add your own implementation.
* @retval None
*/
#ifdef MASTER_BOARD
void HAL_I2C_ErrorCallback(I2C_HandleTypeDef *I2cHandle)
{
/* Turn LED3 on: Transfer error in reception/transmission process */
BSP_LED_On(LED3);
}
#else
void HAL_I2C_ErrorCallback(I2C_HandleTypeDef *I2cHandle)
{
/* Restore config: clock, GPIO... */
SystemClock_Config();
/** Error_Handler() function is called when error occurs.
* 1- When Slave don't acknowledge it's address, Master restarts communication.
* 2- When Master don't acknowledge the last data transferred, Slave don't care in this example.
*/
if (HAL_I2C_GetError(I2cHandle) != HAL_I2C_ERROR_AF)
{
/* Restore GPIO configuration */
BSP_LED_Init(LED2);
BSP_LED_Init(LED3);
/* Turn Off LED2 */
BSP_LED_Off(LED2);
/* Turn On LED3 */
BSP_LED_On(LED3);
}
}
#endif /* MASTER_BOARD */
#ifndef MASTER_BOARD
static void EXTI23_Enable_IT(void)
{
EXTI_HandleTypeDef hexti;
EXTI_ConfigTypeDef exticonfig;
exticonfig.Line = EXTI_LINE_23;
exticonfig.Mode = EXTI_MODE_INTERRUPT;
HAL_EXTI_SetConfigLine(&hexti,&exticonfig);
}
#endif
/**
* @brief Compares two buffers.
* @param pBuffer1, pBuffer2: buffers to be compared.
* @param BufferLength: buffer's length
* @retval 0 : pBuffer1 identical to pBuffer2
* >0 : pBuffer1 differs from pBuffer2
*/
static uint16_t Buffercmp(uint8_t* pBuffer1, uint8_t* pBuffer2, uint16_t BufferLength)
{
while (BufferLength--)
{
if ((*pBuffer1) != *pBuffer2)
{
return BufferLength;
}
pBuffer1++;
pBuffer2++;
}
return 0;
}
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
/* Turn LED3 on */
BSP_LED_On(LED3);
while(1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
Error_Handler();
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */