STM32CubeWL/Projects/NUCLEO-WL55JC/Examples/PWR/PWR_STOP2_RTC/Src/main.c

358 lines
10 KiB
C

/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file PWR/PWR_STOP2_RTC/Src/main.c
* @author MCD Application Team
* @brief This sample code shows how to use STM32WLxx PWR HAL API to enter
* and exit the Stop 2 mode using RTC.
******************************************************************************
* @attention
*
* Copyright (c) 2020 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
RTC_HandleTypeDef hrtc;
/* USER CODE BEGIN PV */
/* Private variables ---------------------------------------------------------*/
#define LED_TOGGLE_DELAY 100
static __IO uint32_t TimingDelay;
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_RTC_Init(void);
/* USER CODE BEGIN PFP */
void SYSCLKConfig_STOP(void);
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
GPIO_InitTypeDef GPIO_InitStructure;
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_RTC_Init();
/* USER CODE BEGIN 2 */
/* Configure LED2 and LED1 */
BSP_LED_Init(LED2);
BSP_LED_Init(LED1);
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
/* Insert 5 second delay */
HAL_Delay(5000);
/* Turn off the LED2 */
BSP_LED_Off(LED2);
/* Enable GPIOs clock */
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOH_CLK_ENABLE();
/* Configure all GPIO port pins in Analog Input mode (floating input trigger OFF) */
/* Note: Debug using ST-Link is not possible during the execution of this */
/* example because communication between ST-link and the device */
/* under test is done through UART. All GPIO pins are disabled (set */
/* to analog input mode) including UART I/O pins. */
GPIO_InitStructure.Pin = GPIO_PIN_All;
GPIO_InitStructure.Mode = GPIO_MODE_ANALOG;
GPIO_InitStructure.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOA, &GPIO_InitStructure);
HAL_GPIO_Init(GPIOB, &GPIO_InitStructure);
HAL_GPIO_Init(GPIOC, &GPIO_InitStructure);
HAL_GPIO_Init(GPIOH, &GPIO_InitStructure);
/* Disable GPIOs clock */
__HAL_RCC_GPIOA_CLK_DISABLE();
__HAL_RCC_GPIOB_CLK_DISABLE();
__HAL_RCC_GPIOC_CLK_DISABLE();
__HAL_RCC_GPIOH_CLK_DISABLE();
/* Disable all used wakeup source */
HAL_RTCEx_DeactivateWakeUpTimer(&hrtc);
/* Re-enable wakeup source */
/* ## Setting the Wake up time ############################################*/
/* RTC Wakeup Interrupt Generation:
the wake-up counter is set to its maximum value to yield the longest
stop time to let the current reach its lowest operating point.
The maximum value is 0xFFFF, corresponding to about 33 sec. when
RTC_WAKEUPCLOCK_RTCCLK_DIV = RTCCLK_Div16 = 16
Wakeup Time Base = (RTC_WAKEUPCLOCK_RTCCLK_DIV /(LSI))
Wakeup Time = Wakeup Time Base * WakeUpCounter
= (RTC_WAKEUPCLOCK_RTCCLK_DIV /(LSI)) * WakeUpCounter
==> WakeUpCounter = Wakeup Time / Wakeup Time Base
To configure the wake up timer to maximum value, the WakeUpCounter is set to 0xFFFF:
Wakeup Time Base = 16 /(~32.000KHz) = ~0.5 ms
Wakeup Time = 0.5 ms * WakeUpCounter
Therefore, with wake-up counter = 0xFFFF = 65,535
Wakeup Time = 0,5 ms * 65,535 = 32,7675 s ~ 33 sec. */
HAL_RTCEx_SetWakeUpTimer_IT(&hrtc, 0x0FFFF, RTC_WAKEUPCLOCK_RTCCLK_DIV16, 0);
/* Enter STOP 2 mode */
HAL_PWREx_EnterSTOP2Mode(PWR_STOPENTRY_WFI);
/* ... Stop 2 mode ... */
/* Configure system clock after wake-up from STOP: enable HSE, PLL and select
PLL as system clock source (HSE and PLL are disabled in STOP mode) */
SYSCLKConfig_STOP();
/* Re-configure LED2 */
/* Note: LED state is controlled in function "HAL_SYSTICK_Callback" */
BSP_LED_Init(LED2);
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSI|RCC_OSCILLATORTYPE_MSI;
RCC_OscInitStruct.MSIState = RCC_MSI_ON;
RCC_OscInitStruct.MSICalibrationValue = RCC_MSICALIBRATION_DEFAULT;
RCC_OscInitStruct.MSIClockRange = RCC_MSIRANGE_8;
RCC_OscInitStruct.LSIDiv = RCC_LSI_DIV1;
RCC_OscInitStruct.LSIState = RCC_LSI_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_MSI;
RCC_OscInitStruct.PLL.PLLM = RCC_PLLM_DIV4;
RCC_OscInitStruct.PLL.PLLN = 24;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2;
RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Configure the SYSCLKSource, HCLK, PCLK1 and PCLK2 clocks dividers
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK3|RCC_CLOCKTYPE_HCLK
|RCC_CLOCKTYPE_SYSCLK|RCC_CLOCKTYPE_PCLK1
|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.AHBCLK3Divider = RCC_SYSCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief RTC Initialization Function
* @param None
* @retval None
*/
static void MX_RTC_Init(void)
{
/* USER CODE BEGIN RTC_Init 0 */
/* USER CODE END RTC_Init 0 */
/* USER CODE BEGIN RTC_Init 1 */
/* USER CODE END RTC_Init 1 */
/** Initialize RTC Only
*/
hrtc.Instance = RTC;
hrtc.Init.HourFormat = RTC_HOURFORMAT_24;
hrtc.Init.AsynchPrediv = RTC_ASYNCH_PREDIV;
hrtc.Init.SynchPrediv = RTC_SYNCH_PREDIV ;
hrtc.Init.OutPut = RTC_OUTPUT_DISABLE;
hrtc.Init.OutPutRemap = RTC_OUTPUT_REMAP_NONE;
hrtc.Init.OutPutPolarity = RTC_OUTPUT_POLARITY_HIGH;
hrtc.Init.OutPutType = RTC_OUTPUT_TYPE_OPENDRAIN;
hrtc.Init.OutPutPullUp = RTC_OUTPUT_PULLUP_NONE;
hrtc.Init.BinMode = RTC_BINARY_NONE;
if (HAL_RTC_Init(&hrtc) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN RTC_Init 2 */
/* USER CODE END RTC_Init 2 */
}
/* USER CODE BEGIN 4 */
/**
* @brief Configures system clock after wake-up from STOP: enable HSE, PLL
* and select PLL as system clock source.
* @param None
* @retval None
*/
void SYSCLKConfig_STOP(void)
{
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
uint32_t pFLatency = 0;
/* Get the Oscillators configuration according to the internal RCC registers */
HAL_RCC_GetOscConfig(&RCC_OscInitStruct);
/* Enable PLL */
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_NONE;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/* Get the Clocks configuration according to the internal RCC registers */
HAL_RCC_GetClockConfig(&RCC_ClkInitStruct, &pFLatency);
/* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2
clocks dividers */
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_SYSCLK;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, pFLatency) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief SYSTICK callback
* @param None
* @retval None
*/
void HAL_SYSTICK_Callback(void)
{
if (TimingDelay != 0)
{
TimingDelay--;
}
else
{
/* Toggle LED2 */
BSP_LED_Toggle(LED2);
TimingDelay = LED_TOGGLE_DELAY;
}
}
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* Turn on the LED1 */
BSP_LED_On(LED1);
/* User can add his own implementation to report the HAL error return state */
while(1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* Infinite loop */
while (1)
{
}
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */