STM32CubeWL/Projects/NUCLEO-WL55JC/Examples_LL/CRC/CRC_CalculateAndCheck/Src/main.c

354 lines
9.2 KiB
C

/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file Examples_LL/CRC/CRC_CalculateAndCheck/Src/main.c
* @author MCD Application Team
* @brief This example describes how to use CRC peripheral for generating CRC value
* for an input data Buffer using the STM32WLxx CRC LL API.
* Peripheral initialization done using LL unitary services functions.
******************************************************************************
* @attention
*
* Copyright (c) 2020 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
#define BUFFER_SIZE 39 /* 9 u32 + 1 u16 + 1 u8 */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
/* USER CODE BEGIN PV */
/* Used for storing CRC Value */
__IO uint32_t uwCRCValue = 0;
static const uint8_t aDataBuffer[BUFFER_SIZE] =
{
0x21, 0x10, 0x00, 0x00, 0x63, 0x30, 0x42, 0x20, 0xa5, 0x50, 0x84, 0x40,
0xe7, 0x70, 0xc6, 0x60, 0x4a, 0xa1, 0x29, 0x91, 0x8c, 0xc1, 0x6b, 0xb1,
0xce, 0xe1, 0xad, 0xd1, 0x31, 0x12, 0xef, 0xf1, 0x52, 0x22, 0x73, 0x32,
0xa1, 0xb2, 0xc3
};
/* Expected CRC Value */
uint32_t uwExpectedCRCValue = 0xB553F395;
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_CRC_Init(void);
/* USER CODE BEGIN PFP */
uint32_t Calculate_CRC(uint32_t);
void CheckCRCResultValue(void);
void LED_On(void);
void LED_Blinking(uint32_t Period);
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
/* System interrupt init*/
NVIC_SetPriorityGrouping(NVIC_PRIORITYGROUP_4);
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_CRC_Init();
/* USER CODE BEGIN 2 */
/* Perform CRC calculation on data contained in aDataBuffer */
uwCRCValue = Calculate_CRC(BUFFER_SIZE);
/* Check if CRC computed result value is equal to expected one */
CheckCRCResultValue();
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
LL_FLASH_SetLatency(LL_FLASH_LATENCY_2);
while(LL_FLASH_GetLatency() != LL_FLASH_LATENCY_2)
{
}
LL_PWR_SetRegulVoltageScaling(LL_PWR_REGU_VOLTAGE_SCALE1);
LL_RCC_MSI_Enable();
/* Wait till MSI is ready */
while(LL_RCC_MSI_IsReady() != 1)
{
}
LL_RCC_MSI_EnableRangeSelection();
LL_RCC_MSI_SetRange(LL_RCC_MSIRANGE_11);
LL_RCC_MSI_SetCalibTrimming(0);
LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_MSI);
/* Wait till System clock is ready */
while(LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_MSI)
{
}
LL_RCC_SetAHBPrescaler(LL_RCC_SYSCLK_DIV_1);
LL_RCC_SetAHB3Prescaler(LL_RCC_SYSCLK_DIV_1);
LL_RCC_SetAPB1Prescaler(LL_RCC_APB1_DIV_1);
LL_RCC_SetAPB2Prescaler(LL_RCC_APB2_DIV_1);
LL_Init1msTick(48000000);
/* Update CMSIS variable (which can be updated also through SystemCoreClockUpdate function) */
LL_SetSystemCoreClock(48000000);
}
/**
* @brief CRC Initialization Function
* @param None
* @retval None
*/
static void MX_CRC_Init(void)
{
/* USER CODE BEGIN CRC_Init 0 */
/* USER CODE END CRC_Init 0 */
/* Peripheral clock enable */
LL_AHB1_GRP1_EnableClock(LL_AHB1_GRP1_PERIPH_CRC);
/* USER CODE BEGIN CRC_Init 1 */
/* USER CODE END CRC_Init 1 */
LL_CRC_SetInputDataReverseMode(CRC, LL_CRC_INDATA_REVERSE_NONE);
LL_CRC_SetOutputDataReverseMode(CRC, LL_CRC_OUTDATA_REVERSE_NONE);
LL_CRC_SetPolynomialCoef(CRC, LL_CRC_DEFAULT_CRC32_POLY);
LL_CRC_SetPolynomialSize(CRC, LL_CRC_POLYLENGTH_32B);
LL_CRC_SetInitialData(CRC, LL_CRC_DEFAULT_CRC_INITVALUE);
/* USER CODE BEGIN CRC_Init 2 */
/* USER CODE END CRC_Init 2 */
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void)
{
LL_GPIO_InitTypeDef GPIO_InitStruct = {0};
/* GPIO Ports Clock Enable */
LL_AHB2_GRP1_EnableClock(LL_AHB2_GRP1_PERIPH_GPIOB);
/**/
LL_GPIO_ResetOutputPin(LED2_GPIO_Port, LED2_Pin);
/**/
GPIO_InitStruct.Pin = LED2_Pin;
GPIO_InitStruct.Mode = LL_GPIO_MODE_OUTPUT;
GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_PUSHPULL;
GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;
LL_GPIO_Init(LED2_GPIO_Port, &GPIO_InitStruct);
}
/* USER CODE BEGIN 4 */
/**
* @brief This function performs CRC calculation on BufferSize bytes from input data buffer aDataBuffer.
* @param BufferSize Nb of bytes to be processed for CRC calculation
* @retval 32-bit CRC value computed on input data buffer
*/
uint32_t Calculate_CRC(uint32_t BufferSize)
{
register uint32_t data = 0;
register uint32_t index = 0;
/* Compute the CRC of Data Buffer array*/
for (index = 0; index < (BufferSize / 4); index++)
{
data = (uint32_t)((aDataBuffer[4 * index] << 24) | (aDataBuffer[4 * index + 1] << 16) | (aDataBuffer[4 * index + 2] << 8) | aDataBuffer[4 * index + 3]);
LL_CRC_FeedData32(CRC, data);
}
/* Last bytes specific handling */
if ((BUFFER_SIZE % 4) != 0)
{
if (BUFFER_SIZE % 4 == 1)
{
LL_CRC_FeedData8(CRC, aDataBuffer[4 * index]);
}
if (BUFFER_SIZE % 4 == 2)
{
LL_CRC_FeedData16(CRC, (uint16_t)((aDataBuffer[4 * index] << 8) | aDataBuffer[4 * index + 1]));
}
if (BUFFER_SIZE % 4 == 3)
{
LL_CRC_FeedData16(CRC, (uint16_t)((aDataBuffer[4 * index] << 8) | aDataBuffer[4 * index + 1]));
LL_CRC_FeedData8(CRC, aDataBuffer[4 * index + 2]);
}
}
/* Return computed CRC value */
return (LL_CRC_ReadData32(CRC));
}
/**
* @brief Check CRC computation result value.
* @param None
* @retval None
*/
void CheckCRCResultValue(void)
{
/* Compare the CRC value to the Expected one */
if (uwCRCValue != uwExpectedCRCValue)
{
/* Wrong CRC value: Set LED2 to Blinking mode (Error) */
LED_Blinking(LED_BLINK_ERROR);
}
else
{
/* Right CRC value: Turn LED2 on */
LED_On();
}
}
/**
* @brief Turn-on LED2.
* @param None
* @retval None
*/
void LED_On(void)
{
/* Turn LED2 on */
LL_GPIO_SetOutputPin(LED2_GPIO_Port, LED2_Pin);
}
/**
* @brief Set LED2 to Blinking mode for an infinite loop (toggle period based on value provided as input parameter).
* @param Period : Period of time (in ms) between each toggling of LED
* This parameter can be user defined values. Pre-defined values used in that example are :
* @arg LED_BLINK_FAST : Fast Blinking
* @arg LED_BLINK_SLOW : Slow Blinking
* @arg LED_BLINK_ERROR : Error specific Blinking
* @retval None
*/
void LED_Blinking(uint32_t Period)
{
/* Toggle IO in an infinite loop */
while (1)
{
LL_GPIO_TogglePin(LED2_GPIO_Port, LED2_Pin);
LL_mDelay(Period);
}
}
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d", file, line) */
/* Infinite loop */
while (1)
{
}
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */