STM32CubeWL/Middlewares/Third_Party/LoRaWAN/Crypto/soft-se.c

1620 lines
49 KiB
C

/*!
* \file soft-se.c
*
* \brief Secure Element software implementation
*
* \copyright Revised BSD License, see section \ref LICENSE.
*
* \code
* ______ _
* / _____) _ | |
* ( (____ _____ ____ _| |_ _____ ____| |__
* \____ \| ___ | (_ _) ___ |/ ___) _ \
* _____) ) ____| | | || |_| ____( (___| | | |
* (______/|_____)_|_|_| \__)_____)\____)_| |_|
* (C)2020 Semtech
*
* ___ _____ _ ___ _ _____ ___ ___ ___ ___
* / __|_ _/_\ / __| |/ / __/ _ \| _ \/ __| __|
* \__ \ | |/ _ \ (__| ' <| _| (_) | / (__| _|
* |___/ |_/_/ \_\___|_|\_\_| \___/|_|_\\___|___|
* embedded.connectivity.solutions===============
*
* \endcode
*
*/
/**
******************************************************************************
*
* Portions COPYRIGHT 2020 STMicroelectronics
*
* @file soft-se.c
* @author MCD Application Team
* @brief Secure Element software implementation
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "lorawan_conf.h" /* LORAWAN_KMS */
#include "radio.h" /* needed for Random */
#include "utilities.h"
#include "mw_log_conf.h" /* needed for MW_LOG */
#if (!defined (LORAWAN_KMS) || (LORAWAN_KMS == 0))
#include "lorawan_aes.h"
#include "cmac.h"
#else /* LORAWAN_KMS == 1 */
#include "kms_if.h"
#endif /* LORAWAN_KMS */
#include "LoRaMacHeaderTypes.h"
#include "LoRaMacVersion.h"
#include "secure-element.h"
#include "secure-element-nvm.h"
#include "se-identity.h"
/* Private constants ---------------------------------------------------------*/
#ifndef LORAWAN_KMS
#define LORAWAN_KMS 0
#endif /* LORAWAN_KMS */
#ifndef KEY_EXTRACTABLE
#define KEY_EXTRACTABLE 0
#endif /* KEY_EXTRACTABLE */
/*!
* MIC computation offset
* \remark required for 1.1.x support
*/
#define CRYPTO_MIC_COMPUTATION_OFFSET ( JOIN_REQ_TYPE_SIZE\
+ LORAMAC_JOIN_EUI_FIELD_SIZE + DEV_NONCE_SIZE + LORAMAC_MHDR_FIELD_SIZE )
#if (LORAWAN_KMS == 0)
#else /* LORAWAN_KMS == 1 */
#define DERIVED_OBJECT_HANDLE_RESET_VAL 0x0UL
#define PAYLOAD_MAX_SIZE 270UL /* 270 PHYPayload: 1+(22+1+242)+4 */
#endif /* LORAWAN_KMS */
/* Private macro -------------------------------------------------------------*/
/*!
* Hex 8 split buffer
*/
#define HEX8(X) X[0], X[1], X[2], X[3], X[4], X[5], X[6], X[7]
/*!
* Hex 16 split buffer
*/
#define HEX16(X) HEX8(X), X[8], X[9], X[10], X[11], X[12], X[13], X[14], X[15]
/*Can be overloaded in lorawan_conf.h*/
#ifndef SOFT_SE_PLACE_IN_NVM_START
#define SOFT_SE_PLACE_IN_NVM_START
#endif /* SOFT_SE_PLACE_IN_NVM_START */
#ifndef SOFT_SE_PLACE_IN_NVM_STOP
#define SOFT_SE_PLACE_IN_NVM_STOP
#endif /* SOFT_SE_PLACE_IN_NVM_STOP */
/*
* 32-bit integer manipulation macros (big endian)
*/
#ifndef GET_UINT32_BE
#define GET_UINT32_BE(b,i) \
( (uint32_t) (b)[(i) ] << 24 ) \
| ( (uint32_t) (b)[(i) + 1] << 16 ) \
| ( (uint32_t) (b)[(i) + 2] << 8 ) \
| ( (uint32_t) (b)[(i) + 3] )
#endif /* GET_UINT32_BE */
/*
* 32-bit integer manipulation macros (little endian)
*/
#ifndef GET_UINT32_LE
#define GET_UINT32_LE(b,i) \
( (uint32_t) (b)[(i) ] ) \
| ( (uint32_t) (b)[(i) + 1] << 8 ) \
| ( (uint32_t) (b)[(i) + 2] << 16 ) \
| ( (uint32_t) (b)[(i) + 3] << 24 )
#endif /* GET_UINT32_LE */
/*
* Get the number of attributes in the structure
*/
#ifndef GET_NB_ATTRIBUTE
#define GET_NB_ATTRIBUTE(s) (sizeof(s) / sizeof(CK_ATTRIBUTE))
#endif /* GET_NB_ATTRIBUTE */
/* Private Types -------------------------------------------------------------*/
typedef struct SecureElementKeyLabel
{
KeyIdentifier_t keyID;
uint32_t keyLabel;
char *keyStr;
} SecureElementKeyLabel_t;
/* Private variables ---------------------------------------------------------*/
/*!
* Secure element context
*/
static SecureElementNvmData_t *SeNvm;
#if ((LORAWAN_KMS == 1) || (KEY_EXTRACTABLE == 1))
static const SecureElementKeyLabel_t KeyLabel[NUM_OF_KEYS] =
{
{APP_KEY, 0x5F505041U, "AppKey: "},
{NWK_KEY, 0x5F4B574EU, "NwkKey: "},
#if (LORAWAN_KMS == 1)
{DEV_JOIN_EUI_ADDR_KEY, 0x5F564544U, ""},
#endif /* LORAWAN_KMS */
#if (defined( LORAMAC_VERSION ) && ( LORAMAC_VERSION == 0x01010100 ))
{J_S_INT_KEY, 0x314B574EU, "JSIntKey: "},
{J_S_ENC_KEY, 0x324B574EU, "JSEncKey: "},
{F_NWK_S_INT_KEY, 0x334B574EU, "FNwkSIntKey:"},
{S_NWK_S_INT_KEY, 0x344B574EU, "SNwkSIntKey:"},
{NWK_S_ENC_KEY, 0x354B574EU, "NwkSEncKey: "},
#else
{NWK_S_KEY, 0x534B574EU, "NwkSKey: "},
#endif /* LORAMAC_VERSION */
{APP_S_KEY, 0x53505041U, "AppSKey: "},
{DATABLOCK_INT_KEY, 0x5F494244U, "DBIntKey: "},
{MC_ROOT_KEY, 0x5452434DU, "MCRootKey: "},
{MC_KE_KEY, 0x454B434DU, "MCKEKey: "},
#if ( LORAMAC_MAX_MC_CTX > 0 )
{MC_KEY_0, 0x304B434DU, "MCAppSKey_0:"},
{MC_APP_S_KEY_0, 0x3053414DU, "MCAppSKey_0:"},
{MC_NWK_S_KEY_0, 0x30534E4DU, "MCNwkSKey_0:"},
#endif /* LORAMAC_MAX_MC_CTX > 0 */
#if ( LORAMAC_MAX_MC_CTX > 1 )
{MC_KEY_1, 0x314B434DU, "MCAppSKey_1:"},
{MC_APP_S_KEY_1, 0x3153414DU, "MCAppSKey_1:"},
{MC_NWK_S_KEY_1, 0x31534E4DU, "MCNwkSKey_1:"},
#endif /* LORAMAC_MAX_MC_CTX > 1 */
#if ( LORAMAC_MAX_MC_CTX > 2 )
{MC_KEY_2, 0x324B434DU, "MCAppSKey_2:"},
{MC_APP_S_KEY_2, 0x3253414DU, "MCAppSKey_2:"},
{MC_NWK_S_KEY_2, 0x32534E4DU, "MCNwkSKey_2:"},
#endif /* LORAMAC_MAX_MC_CTX > 2 */
#if ( LORAMAC_MAX_MC_CTX > 3 )
{MC_KEY_3, 0x334B434DU, "MCAppSKey_3:"},
{MC_APP_S_KEY_3, 0x3353414DU, "MCAppSKey_3:"},
{MC_NWK_S_KEY_3, 0x33534E4DU, "MCNwkSKey_3:"},
#endif /* LORAMAC_MAX_MC_CTX > 3 */
{SLOT_RAND_ZERO_KEY, 0x4F52455AU, ""}
};
#endif /* (LORAWAN_KMS == 1) || (KEY_EXTRACTABLE == 1) */
#if (LORAWAN_KMS == 0)
/*
* if defined, place seNvmInit in memory
* this allows device commissioning
*/
SOFT_SE_PLACE_IN_NVM_START
static const SecureElementNvmData_t seNvmInit =
{
SOFT_SE_ID_LIST,
.KeyList = SOFT_SE_KEY_LIST,
};
SOFT_SE_PLACE_IN_NVM_STOP
#else /* LORAWAN_KMS == 1 */
static Key_t KeyList[NUM_OF_KEYS] =
{
{APP_KEY, KMS_APP_KEY_OBJECT_HANDLE},
{NWK_KEY, KMS_NWK_KEY_OBJECT_HANDLE},
{DEV_JOIN_EUI_ADDR_KEY, KMS_DEVJOINEUIADDR_KEY_OBJECT_HANDLE},
#if (defined( LORAMAC_VERSION ) && ( LORAMAC_VERSION == 0x01010100 ))
{J_S_INT_KEY, ( CK_OBJECT_HANDLE )( ~0UL )},
{J_S_ENC_KEY, ( CK_OBJECT_HANDLE )( ~0UL )},
{F_NWK_S_INT_KEY, ( CK_OBJECT_HANDLE )( ~0UL )},
{S_NWK_S_INT_KEY, ( CK_OBJECT_HANDLE )( ~0UL )},
{NWK_S_ENC_KEY, ( CK_OBJECT_HANDLE )( ~0UL )},
#else
{NWK_S_KEY, KMS_NWK_S_KEY_OBJECT_HANDLE},
#endif /* LORAMAC_VERSION */
{APP_S_KEY, KMS_APP_S_KEY_OBJECT_HANDLE},
{DATABLOCK_INT_KEY, ( CK_OBJECT_HANDLE )( ~0UL )},
{MC_ROOT_KEY, ( CK_OBJECT_HANDLE )( ~0UL )},
{MC_KE_KEY, ( CK_OBJECT_HANDLE )( ~0UL )},
#if ( LORAMAC_MAX_MC_CTX > 0 )
{MC_KEY_0, ( CK_OBJECT_HANDLE )( ~0UL )},
{MC_APP_S_KEY_0, ( CK_OBJECT_HANDLE )( ~0UL )},
{MC_NWK_S_KEY_0, ( CK_OBJECT_HANDLE )( ~0UL )},
#endif /* LORAMAC_MAX_MC_CTX > 0 */
#if ( LORAMAC_MAX_MC_CTX > 1 )
{MC_KEY_1, ( CK_OBJECT_HANDLE )( ~0UL )},
{MC_APP_S_KEY_1, ( CK_OBJECT_HANDLE )( ~0UL )},
{MC_NWK_S_KEY_1, ( CK_OBJECT_HANDLE )( ~0UL )},
#endif /* LORAMAC_MAX_MC_CTX > 1 */
#if ( LORAMAC_MAX_MC_CTX > 2 )
{MC_KEY_2, ( CK_OBJECT_HANDLE )( ~0UL )},
{MC_APP_S_KEY_2, ( CK_OBJECT_HANDLE )( ~0UL )},
{MC_NWK_S_KEY_2, ( CK_OBJECT_HANDLE )( ~0UL )},
#endif /* LORAMAC_MAX_MC_CTX > 2 */
#if ( LORAMAC_MAX_MC_CTX > 3 )
{MC_KEY_3, ( CK_OBJECT_HANDLE )( ~0UL )},
{MC_APP_S_KEY_3, ( CK_OBJECT_HANDLE )( ~0UL )},
{MC_NWK_S_KEY_3, ( CK_OBJECT_HANDLE )( ~0UL )},
#endif /*LORAMAC_MAX_MC_CTX > 3 */
{SLOT_RAND_ZERO_KEY, KMS_ZERO_KEY_OBJECT_HANDLE}
};
/* WARNING: Should be modified at the end of product development */
static const CK_ULONG GlobalTemplateLabel = 0x444E524CU;
/*
* Intermediate buffer used for two reasons:
* - align to 32 bits and
* - for Cmac combine InitVector + input buff
*/
static uint8_t input_align_combined_buf[PAYLOAD_MAX_SIZE + SE_KEY_SIZE] ALIGN( 4 );
static uint8_t output_align[PAYLOAD_MAX_SIZE] ALIGN( 4 );
static uint8_t tag[SE_KEY_SIZE] ALIGN( 4 ) = {0};
#endif /* LORAWAN_KMS */
/* Private functions prototypes ---------------------------------------------------*/
#if (LORAWAN_KMS == 0)
/*
* Gets key item from key list.
*
* \param [in] keyID - Key identifier
* \param [out] keyItem - Key item reference
* \retval - Status of the operation
*/
static SecureElementStatus_t GetKeyByID( KeyIdentifier_t keyID, Key_t **keyItem );
#else /* LORAWAN_KMS == 1 */
/*
* Gets key index from key list in KMS table
*
* \param [in] keyID - Key identifier
* \param [out] keyIndex - Key item reference
* \retval - Status of the operation
*/
static SecureElementStatus_t GetKeyIndexByID( KeyIdentifier_t keyID, CK_OBJECT_HANDLE *keyIndex );
/*
* Gets key label from key list in KMS table
*
* \param [in] keyID - Key identifier
* \param [out] keyLabel - Key label reference
* \retval - Status of the operation
*/
static SecureElementStatus_t GetSpecificLabelByID( KeyIdentifier_t keyID, uint32_t *keyLabel );
#endif /* LORAWAN_KMS */
/*
* Extract and print the key content
*
* \param [in] keyID - Key identifier
*/
static void PrintKey( KeyIdentifier_t keyID );
/*
* Extract and print the IDs information
*
* \param [in] mode - Mode used to get the associated DevAddr value
*/
static void PrintIds( ActivationType_t mode );
/*
* Computes a CMAC of a message using provided initial Bx block
*
* cmac = aes128_cmac(keyID, blocks[i].Buffer)
*
* \param [in] micBxBuffer - Buffer containing the initial Bx block
* \param [in] buffer - Data buffer
* \param [in] size - Data buffer size
* \param [in] keyID - Key identifier to determine the AES key to be used
* \param [out] cmac - Computed cmac
* \retval - Status of the operation
*/
static SecureElementStatus_t ComputeCmac( uint8_t *micBxBuffer, uint8_t *buffer, uint32_t size, KeyIdentifier_t keyID,
uint32_t *cmac );
/* Private functions ---------------------------------------------------------*/
static void PrintKey( KeyIdentifier_t keyID )
{
#if (KEY_EXTRACTABLE == 1)
#if (LORAWAN_KMS == 0)
Key_t *keyItem;
if( SECURE_ELEMENT_SUCCESS == SecureElementGetKeyByID( keyID, &keyItem ) )
#else
uint8_t extractable_key[SE_KEY_SIZE] = {0};
if( SECURE_ELEMENT_SUCCESS == SecureElementGetKeyByID( keyID, ( uint8_t * )extractable_key ) )
#endif /* LORAWAN_KMS */
{
for( uint8_t i = 0; i < NUM_OF_KEYS; i++ )
{
if( KeyLabel[i].keyID == keyID )
{
#if (LORAWAN_KMS == 0)
MW_LOG( TS_OFF, VLEVEL_M,
"###### %s %02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\r\n",
KeyLabel[i].keyStr,
HEX16( keyItem->KeyValue ) );
#else
MW_LOG( TS_OFF, VLEVEL_M,
"###### %s %02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\r\n",
KeyLabel[i].keyStr,
HEX16( extractable_key ) );
#endif /* LORAWAN_KMS */
return;
}
}
}
#endif /* KEY_EXTRACTABLE */
}
static void PrintIds( ActivationType_t mode )
{
uint8_t joinEui[SE_EUI_SIZE];
uint8_t devEui[SE_EUI_SIZE];
uint32_t devAddr = 0;
SecureElementGetDevEui( devEui );
MW_LOG( TS_OFF, VLEVEL_M, "###### DevEUI: %02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\r\n", HEX8( devEui ) );
SecureElementGetJoinEui( joinEui );
MW_LOG( TS_OFF, VLEVEL_M, "###### AppEUI: %02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\r\n", HEX8( joinEui ) );
SecureElementGetDevAddr( mode, &devAddr );
MW_LOG( TS_OFF, VLEVEL_M, "###### DevAddr: %02X:%02X:%02X:%02X\r\n",
( unsigned )( ( unsigned char * )( &devAddr ) )[3],
( unsigned )( ( unsigned char * )( &devAddr ) )[2],
( unsigned )( ( unsigned char * )( &devAddr ) )[1],
( unsigned )( ( unsigned char * )( &devAddr ) )[0] );
}
#if (LORAWAN_KMS == 0)
static SecureElementStatus_t GetKeyByID( KeyIdentifier_t keyID, Key_t **keyItem )
{
for( uint8_t i = 0; i < NUM_OF_KEYS; i++ )
{
if( SeNvm->KeyList[i].KeyID == keyID )
{
*keyItem = &( SeNvm->KeyList[i] );
return SECURE_ELEMENT_SUCCESS;
}
}
return SECURE_ELEMENT_ERROR_INVALID_KEY_ID;
}
#else /* LORAWAN_KMS == 1 */
static SecureElementStatus_t GetKeyIndexByID( KeyIdentifier_t keyID, CK_OBJECT_HANDLE *keyIndex )
{
if( keyIndex == NULL )
{
return SECURE_ELEMENT_ERROR_NPE;
}
for( uint8_t i = 0; i < NUM_OF_KEYS; i++ )
{
if( KeyList[i].KeyID == keyID )
{
*keyIndex = KeyList[i].Object_Index;
return SECURE_ELEMENT_SUCCESS;
}
}
return SECURE_ELEMENT_ERROR_INVALID_KEY_ID;
}
static SecureElementStatus_t GetSpecificLabelByID( KeyIdentifier_t keyID, uint32_t *keyLabel )
{
if( keyLabel == NULL )
{
return SECURE_ELEMENT_ERROR_NPE;
}
for( uint8_t i = 0; i < NUM_OF_KEYS; i++ )
{
if( KeyLabel[i].keyID == keyID )
{
*keyLabel = KeyLabel[i].keyLabel;
return SECURE_ELEMENT_SUCCESS;
}
}
return SECURE_ELEMENT_ERROR_INVALID_KEY_ID;
}
#endif /* LORAWAN_KMS */
static SecureElementStatus_t ComputeCmac( uint8_t *micBxBuffer, uint8_t *buffer, uint32_t size, KeyIdentifier_t keyID,
uint32_t *cmac )
{
if( ( buffer == NULL ) || ( cmac == NULL ) )
{
return SECURE_ELEMENT_ERROR_NPE;
}
#if (LORAWAN_KMS == 0)
uint8_t Cmac[16];
AES_CMAC_CTX aesCmacCtx[1];
AES_CMAC_Init( aesCmacCtx );
Key_t *keyItem;
SecureElementStatus_t retval = GetKeyByID( keyID, &keyItem );
if( retval == SECURE_ELEMENT_SUCCESS )
{
AES_CMAC_SetKey( aesCmacCtx, keyItem->KeyValue );
if( micBxBuffer != NULL )
{
AES_CMAC_Update( aesCmacCtx, micBxBuffer, MIC_BLOCK_BX_SIZE );
}
AES_CMAC_Update( aesCmacCtx, buffer, size );
AES_CMAC_Final( Cmac, aesCmacCtx );
/* Bring into the required format */
*cmac = GET_UINT32_LE( Cmac, 0 );
}
#else /* LORAWAN_KMS == 1 */
CK_RV rv;
CK_SESSION_HANDLE session;
CK_FLAGS session_flags = CKF_SERIAL_SESSION; /* Read ONLY session */
uint32_t tag_length = sizeof( tag );
CK_OBJECT_HANDLE key_handle;
#if 0 /* require C_SignUpdate and C_SignFinal KMS implementation */
uint32_t max_allocated_size = 0;
uint32_t buffer_addr = ( uint32_t )buffer;
#endif /* 0 */
/* AES CMAC Authentication variables */
CK_MECHANISM aes_cmac_mechanism = { CKM_AES_CMAC, ( CK_VOID_PTR )NULL, 0 };
SecureElementStatus_t retval = GetKeyIndexByID( keyID, &key_handle );
if( retval != SECURE_ELEMENT_SUCCESS )
{
return retval;
}
/* Open session with KMS */
rv = C_OpenSession( 0, session_flags, NULL, 0, &session );
/* Configure session to Authentication message in AES CMAC with settings included into the mechanism */
if( rv == CKR_OK )
{
rv = C_SignInit( session, &aes_cmac_mechanism, key_handle );
}
#if 1 /* require C_SignUpdate and C_SignFinal KMS implementation */
#if (LORAWAN_PACKAGES_VERSION == 2)
#warning the current implementation of ComputeCmac is not functional for LoRaMacProcessMicForDatablock method called by LmhpFragmentation due to memcpy overflow. \
need to replace this code as below with C_SignUpdate and C_SignFinal methods usage.
#endif /* LORAWAN_PACKAGES_VERSION */
/* Encrypt clear message */
if( rv == CKR_OK )
{
/* work around : need to double-check if possible to use micBxBuffer as IV for Sign */
if( micBxBuffer != NULL )
{
memcpy1( ( uint8_t * ) &input_align_combined_buf[0], ( uint8_t * ) micBxBuffer, SE_KEY_SIZE );
memcpy1( ( uint8_t * ) &input_align_combined_buf[SE_KEY_SIZE], ( uint8_t * ) buffer, size );
}
else
{
memcpy1( ( uint8_t * ) &input_align_combined_buf[0], ( uint8_t * ) buffer, size );
}
}
if( rv == CKR_OK )
{
if( micBxBuffer != NULL )
{
rv = C_Sign( session, ( CK_BYTE_PTR )&input_align_combined_buf[0], size + SE_KEY_SIZE, &tag[0],
( CK_ULONG_PTR )&tag_length );
}
else
{
rv = C_Sign( session, ( CK_BYTE_PTR )&input_align_combined_buf[0], size, &tag[0],
( CK_ULONG_PTR )&tag_length );
}
}
#else
/* Sign the partial start message if exists */
if( rv == CKR_OK )
{
if( micBxBuffer != NULL )
{
rv = C_SignUpdate( session, ( CK_BYTE_PTR )micBxBuffer, MIC_BLOCK_BX_SIZE );
}
}
if( ( buffer_addr % 4 ) == 0 ) /* buffer address is aligned */
{
/* Sign the full message */
if( rv == CKR_OK )
{
rv = C_SignUpdate( session, ( CK_BYTE_PTR )buffer, size );
}
}
else
{
/* Sign the message by block */
while( ( size != 0 ) && ( rv == CKR_OK ) )
{
if( size > sizeof( input_align_combined_buf ) )
{
max_allocated_size = sizeof( input_align_combined_buf );
}
else
{
max_allocated_size = size;
}
memcpy1( ( uint8_t * ) input_align_combined_buf, ( uint8_t * ) buffer, max_allocated_size );
rv = C_SignUpdate( session, ( CK_BYTE_PTR )input_align_combined_buf, max_allocated_size );
size -= max_allocated_size;
}
}
/* Finishes a multiple-part signature operation */
if( rv == CKR_OK )
{
rv = C_SignFinal( session, tag, ( CK_ULONG_PTR )&tag_length );
}
#endif /* 0 */
/* Close session with KMS */
( void )C_CloseSession( session );
/* combine to a 32bit authentication word (MIC) */
*cmac = GET_UINT32_LE( tag, 0 );
if( rv != CKR_OK )
{
retval = SECURE_ELEMENT_ERROR;
}
#endif /* LORAWAN_KMS */
return retval;
}
/* Exported functions ---------------------------------------------------------*/
/*
* API functions
*/
SecureElementStatus_t SecureElementInit( SecureElementNvmData_t *nvm )
{
if( nvm == NULL )
{
return SECURE_ELEMENT_ERROR_NPE;
}
/* Initialize nvm pointer */
SeNvm = nvm;
#if (LORAWAN_KMS == 0)
/* Initialize data */
memcpy1( ( uint8_t * )SeNvm, ( uint8_t * )&seNvmInit, sizeof( seNvmInit ) );
#else /* LORAWAN_KMS == 1 */
SeNvm->reserved = 0;
CK_RV rv;
CK_SESSION_HANDLE session;
uint32_t ulCount;
CK_FLAGS session_flags = CKF_SERIAL_SESSION; /* Read ONLY session */
CK_OBJECT_HANDLE hObject[NUM_OF_KEYS];
CK_ULONG local_template_label[] = {GlobalTemplateLabel, 0UL};
CK_ATTRIBUTE key_template = {CKA_LABEL, ( CK_VOID_PTR )local_template_label, sizeof( local_template_label )};
/* Open session with KMS */
rv = C_OpenSession( 0, session_flags, NULL, 0, &session );
for( uint8_t itr = 0; itr < NUM_OF_KEYS; itr++ )
{
if( SECURE_ELEMENT_SUCCESS == GetSpecificLabelByID( KeyList[itr].KeyID, &local_template_label[1] ) )
{
ulCount = 0;
/* Search from Template pattern */
if( rv == CKR_OK )
{
rv = C_FindObjectsInit( session, &key_template, GET_NB_ATTRIBUTE( key_template ) );
}
/* Find all existing keys handle Template pattern */
if( rv == CKR_OK )
{
rv = C_FindObjects( session, hObject, NUM_OF_KEYS, ( CK_ULONG * ) &ulCount );
}
if( rv == CKR_OK )
{
rv = C_FindObjectsFinal( session );
}
if( ( rv == CKR_OK ) && ( ulCount > 0 ) && ( ulCount <= NUM_OF_KEYS ) )
{
KeyList[itr].Object_Index = hObject[ulCount - 1];
}
}
}
/* Close sessions */
if( session > 0 )
{
( void )C_CloseSession( session );
}
#endif /* LORAWAN_KMS */
return SECURE_ELEMENT_SUCCESS;
}
SecureElementStatus_t SecureElementInitMcuID( SecureElementGetUniqueId_t seGetUniqueId,
SecureElementGetDevAddr_t seGetDevAddr )
{
uint8_t devEui[SE_EUI_SIZE];
uint32_t devAddrABP = 0;
SecureElementGetDevEui( devEui );
SecureElementGetDevAddr( ACTIVATION_TYPE_ABP, &devAddrABP );
if( seGetUniqueId != NULL )
{
bool id_init = false;
for( uint8_t index = 0; index < SE_EUI_SIZE; index++ )
{
if( devEui[index] != 0 )
{
id_init = true;
break;
}
}
if( id_init == false )
{
/* Get a DevEUI from MCU unique ID */
seGetUniqueId( devEui );
SecureElementSetDevEui( devEui );
}
}
if( ( seGetDevAddr != NULL ) && ( devAddrABP == 0 ) )
{
/* callback to dynamic DevAddr generation */
seGetDevAddr( &devAddrABP );
SecureElementSetDevAddr( ACTIVATION_TYPE_ABP, devAddrABP );
}
return SECURE_ELEMENT_SUCCESS;
}
#if (LORAWAN_KMS == 0)
SecureElementStatus_t SecureElementGetKeyByID( KeyIdentifier_t keyID, Key_t **keyItem )
{
#if (KEY_EXTRACTABLE == 1)
for( uint8_t i = 0; i < NUM_OF_KEYS; i++ )
{
if( SeNvm->KeyList[i].KeyID == keyID )
{
*keyItem = &( SeNvm->KeyList[i] );
return SECURE_ELEMENT_SUCCESS;
}
}
#endif /* KEY_EXTRACTABLE */
return SECURE_ELEMENT_ERROR_INVALID_KEY_ID;
}
#else /* LORAWAN_KMS == 1 */
SecureElementStatus_t SecureElementGetKeyByID( KeyIdentifier_t keyID, uint8_t *extractable_key )
{
CK_RV rv;
CK_SESSION_HANDLE session;
CK_FLAGS session_flags = CKF_SERIAL_SESSION; /* Read ONLY session */
CK_OBJECT_HANDLE key_handle = ( CK_OBJECT_HANDLE )( ~0UL );
CK_ULONG derive_key_template_class = CKO_SECRET_KEY;
uint32_t size = SE_KEY_SIZE;
if( extractable_key == NULL )
{
return SECURE_ELEMENT_ERROR_NPE;
}
if( keyID == DEV_JOIN_EUI_ADDR_KEY )
{
size = SE_NVM_EUI_SIZE;
}
CK_ATTRIBUTE key_attribute_template = {CKA_VALUE, ( CK_VOID_PTR ) &derive_key_template_class, size};
if( GetKeyIndexByID( keyID, &key_handle ) == SECURE_ELEMENT_ERROR_INVALID_KEY_ID )
{
return SECURE_ELEMENT_ERROR_INVALID_KEY_ID;
}
/* Open session with KMS */
rv = C_OpenSession( 0, session_flags, NULL, 0, &session );
/* Get key to display */
if( rv == CKR_OK )
{
key_attribute_template.pValue = extractable_key;
rv = C_GetAttributeValue( session, key_handle, &key_attribute_template, 1UL );
}
/* Close sessions */
( void )C_CloseSession( session );
if( rv != CKR_OK )
{
return SECURE_ELEMENT_ERROR;
}
return SECURE_ELEMENT_SUCCESS;
}
#endif /* LORAWAN_KMS */
SecureElementStatus_t SecureElementPrintKeys( void )
{
PrintKey( APP_KEY );
PrintKey( NWK_KEY );
PrintKey( APP_S_KEY );
#if (defined( LORAMAC_VERSION ) && ( LORAMAC_VERSION == 0x01010100 ))
PrintKey( F_NWK_S_INT_KEY );
PrintKey( S_NWK_S_INT_KEY );
PrintKey( NWK_S_ENC_KEY );
#else
PrintKey( NWK_S_KEY );
#endif /* LORAMAC_VERSION */
PrintIds( ACTIVATION_TYPE_NONE );
return SECURE_ELEMENT_SUCCESS;
}
SecureElementStatus_t SecureElementPrintSessionKeys( ActivationType_t mode )
{
PrintKey( MC_ROOT_KEY );
PrintKey( MC_KE_KEY );
PrintKey( APP_S_KEY );
#if (defined( LORAMAC_VERSION ) && ( LORAMAC_VERSION == 0x01010100 ))
PrintKey( F_NWK_S_INT_KEY );
PrintKey( S_NWK_S_INT_KEY );
PrintKey( NWK_S_ENC_KEY );
#else
PrintKey( NWK_S_KEY );
#endif /* LORAMAC_VERSION */
PrintKey( DATABLOCK_INT_KEY );
PrintIds( mode );
return SECURE_ELEMENT_SUCCESS;
}
SecureElementStatus_t SecureElementDeleteDynamicKey( KeyIdentifier_t keyID, uint32_t *key_label )
{
#if (LORAWAN_KMS == 0)
return SECURE_ELEMENT_ERROR;
#else /* LORAWAN_KMS == 1 */
CK_RV rv;
CK_SESSION_HANDLE session;
CK_FLAGS session_flags = CKF_SERIAL_SESSION; /* Read ONLY session */
CK_OBJECT_HANDLE hObject[NUM_OF_KEYS];
CK_ULONG local_template_label[] = {GlobalTemplateLabel, 0UL};
CK_ATTRIBUTE dynamic_key_template =
{
CKA_LABEL, ( CK_VOID_PTR )local_template_label, sizeof( local_template_label )
};
uint32_t ulCount = 0;
if( key_label == NULL )
{
return SECURE_ELEMENT_ERROR_NPE;
}
if( SECURE_ELEMENT_SUCCESS != GetSpecificLabelByID( keyID, &local_template_label[1] ) )
{
return SECURE_ELEMENT_ERROR;
}
*key_label = local_template_label[1];
/* Open session with KMS */
rv = C_OpenSession( 0, session_flags, NULL, 0, &session );
/* Search from Template pattern */
if( rv == CKR_OK )
{
rv = C_FindObjectsInit( session, &dynamic_key_template, GET_NB_ATTRIBUTE( dynamic_key_template ) );
}
/* Find all existing keys handle Template pattern */
if( rv == CKR_OK )
{
rv = C_FindObjects( session, hObject, NUM_OF_KEYS, ( CK_ULONG * ) &ulCount );
}
if( rv == CKR_OK )
{
rv = C_FindObjectsFinal( session );
}
if( ulCount <= NUM_OF_KEYS )
{
for( uint8_t i = 0; i < ulCount; i++ )
{
if( rv == CKR_OK )
{
rv = C_DestroyObject( session, hObject[i] );
}
}
}
/* Close sessions */
if( session > 0 )
{
( void )C_CloseSession( session );
}
if( rv != CKR_OK )
{
return SECURE_ELEMENT_ERROR;
}
return SECURE_ELEMENT_SUCCESS;
#endif /* LORAWAN_KMS */
}
SecureElementStatus_t SecureElementSetObjHandler( KeyIdentifier_t keyID, uint32_t keyIndex )
{
#if (LORAWAN_KMS == 0)
return SECURE_ELEMENT_ERROR;
#else /* LORAWAN_KMS == 1 */
for( uint8_t i = 0; i < NUM_OF_KEYS; i++ )
{
if( KeyList[i].KeyID == keyID )
{
KeyList[i].Object_Index = ( CK_OBJECT_HANDLE ) keyIndex;
return SECURE_ELEMENT_SUCCESS;
}
}
return SECURE_ELEMENT_ERROR_INVALID_KEY_ID;
#endif /* LORAWAN_KMS */
}
SecureElementStatus_t SecureElementSetKey( KeyIdentifier_t keyID, uint8_t *key )
{
if( key == NULL )
{
return SECURE_ELEMENT_ERROR_NPE;
}
#if (LORAWAN_KMS == 0)
for( uint8_t i = 0; i < NUM_OF_KEYS; i++ )
{
if( SeNvm->KeyList[i].KeyID == keyID )
{
#if ( LORAMAC_MAX_MC_CTX == 1 )
if( keyID == MC_KEY_0 )
#else /* LORAMAC_MAX_MC_CTX > 1 */
if( ( keyID == MC_KEY_0 ) || ( keyID == MC_KEY_1 ) || ( keyID == MC_KEY_2 ) || ( keyID == MC_KEY_3 ) )
#endif /* LORAMAC_MAX_MC_CTX */
{
/* Decrypt the key if its a Mckey */
SecureElementStatus_t retval = SECURE_ELEMENT_ERROR;
uint8_t decryptedKey[SE_KEY_SIZE] = { 0 };
retval = SecureElementAesEncrypt( key, SE_KEY_SIZE, MC_KE_KEY, decryptedKey );
memcpy1( SeNvm->KeyList[i].KeyValue, decryptedKey, SE_KEY_SIZE );
return retval;
}
else
{
memcpy1( SeNvm->KeyList[i].KeyValue, key, SE_KEY_SIZE );
return SECURE_ELEMENT_SUCCESS;
}
}
}
return SECURE_ELEMENT_ERROR_INVALID_KEY_ID;
#else /* LORAWAN_KMS == 1 */
SecureElementStatus_t retval = SECURE_ELEMENT_ERROR;
CK_RV rv;
CK_SESSION_HANDLE session;
CK_FLAGS session_flags = CKF_SERIAL_SESSION; /* Read ONLY session */
CK_OBJECT_HANDLE key_handle;
CK_ULONG template_class = CKO_SECRET_KEY;
CK_ULONG template_type = CKK_AES;
#if (KEY_EXTRACTABLE == 1)
CK_ULONG template_true = CK_TRUE;
#else
CK_ULONG template_false = CK_FALSE;
#endif /* KEY_EXTRACTABLE */
uint32_t key_ui32[] =
{
GET_UINT32_BE( key, 0 ),
GET_UINT32_BE( key, 4 ),
GET_UINT32_BE( key, 8 ),
GET_UINT32_BE( key, 12 ),
};
uint32_t specific_label[] = {GlobalTemplateLabel, 0UL};
CK_ATTRIBUTE key_attribute_template[] =
{
{ CKA_CLASS, ( CK_VOID_PTR ) &template_class, sizeof( CK_BBOOL ) },
{ CKA_KEY_TYPE, ( CK_VOID_PTR ) &template_type, sizeof( CK_BBOOL ) },
{ CKA_VALUE, ( CK_VOID_PTR ) key_ui32, sizeof( key_ui32 )},
#if (KEY_EXTRACTABLE == 1)
{ CKA_EXTRACTABLE, ( CK_VOID_PTR ) &template_true, sizeof( CK_BBOOL ) },
#else
{ CKA_EXTRACTABLE, ( CK_VOID_PTR ) &template_false, sizeof( CK_BBOOL ) },
#endif /* KEY_EXTRACTABLE */
{ CKA_LABEL, ( CK_VOID_PTR ) specific_label, sizeof( specific_label ) },
};
#if ( LORAMAC_MAX_MC_CTX == 1 )
if( keyID == MC_KEY_0 )
#else /* LORAMAC_MAX_MC_CTX > 1 */
if( ( keyID == MC_KEY_0 ) || ( keyID == MC_KEY_1 ) || ( keyID == MC_KEY_2 ) || ( keyID == MC_KEY_3 ) )
#endif /* LORAMAC_MAX_MC_CTX */
{
/* Decrypt the key if its a Mckey */
uint8_t decryptedKey[SE_KEY_SIZE] = { 0 };
if( SECURE_ELEMENT_SUCCESS != SecureElementAesEncrypt( key, SE_KEY_SIZE, MC_KE_KEY, decryptedKey ) )
{
return SECURE_ELEMENT_ERROR;
}
key_ui32[0] = GET_UINT32_BE( decryptedKey, 0 );
key_ui32[1] = GET_UINT32_BE( decryptedKey, 4 );
key_ui32[2] = GET_UINT32_BE( decryptedKey, 8 );
key_ui32[3] = GET_UINT32_BE( decryptedKey, 12 );
}
if( SECURE_ELEMENT_SUCCESS != GetKeyIndexByID( keyID, &key_handle ) )
{
return SECURE_ELEMENT_ERROR;
}
if( SECURE_ELEMENT_SUCCESS != SecureElementDeleteDynamicKey( keyID, &specific_label[1] ) )
{
return SECURE_ELEMENT_ERROR;
}
/* Open session with KMS */
rv = C_OpenSession( 0, session_flags, NULL, 0, &session );
/* Get key to display */
if( rv == CKR_OK )
{
rv = C_CreateObject( session, key_attribute_template, GET_NB_ATTRIBUTE( key_attribute_template ),
&key_handle );
}
if( rv == CKR_OK )
{
retval = SecureElementSetObjHandler( keyID, key_handle );
}
/* Close sessions */
( void )C_CloseSession( session );
if( rv != CKR_OK )
{
retval = SECURE_ELEMENT_ERROR;
}
return retval;
#endif /* LORAWAN_KMS */
}
SecureElementStatus_t SecureElementSetID( SecureElementNvmDevJoinAddrKey_t *KMSKeyBlob )
{
#if (LORAWAN_KMS == 0)
return SECURE_ELEMENT_SUCCESS;
#else /* LORAWAN_KMS == 1 */
SecureElementStatus_t retval = SECURE_ELEMENT_ERROR;
CK_RV rv;
CK_SESSION_HANDLE session;
KeyIdentifier_t keyID = DEV_JOIN_EUI_ADDR_KEY;
CK_FLAGS session_flags = CKF_SERIAL_SESSION; /* Read ONLY session */
CK_OBJECT_HANDLE key_handle;
CK_ULONG template_class = CKO_SECRET_KEY;
CK_ULONG template_type = CKK_AES;
CK_ULONG template_true = CK_TRUE;
uint8_t *buf = ( uint8_t * )KMSKeyBlob;
uint32_t buf_ui32[] =
{
GET_UINT32_BE( buf, 0 ),
GET_UINT32_BE( buf, 4 ),
GET_UINT32_BE( buf, 8 ),
GET_UINT32_BE( buf, 12 ),
GET_UINT32_BE( buf, 16 ),
GET_UINT32_BE( buf, 20 ),
};
uint32_t specific_label[] = {GlobalTemplateLabel, 0UL};
CK_ATTRIBUTE attribute_template[] =
{
{ CKA_CLASS, ( CK_VOID_PTR ) &template_class, sizeof( CK_BBOOL ) },
{ CKA_KEY_TYPE, ( CK_VOID_PTR ) &template_type, sizeof( CK_BBOOL ) },
{ CKA_VALUE, ( CK_VOID_PTR ) buf_ui32, sizeof( buf_ui32 ) },
{ CKA_EXTRACTABLE, ( CK_VOID_PTR ) &template_true, sizeof( CK_BBOOL ) },
{ CKA_LABEL, ( CK_VOID_PTR ) specific_label, sizeof( specific_label )},
};
if( KMSKeyBlob == NULL )
{
return SECURE_ELEMENT_ERROR_NPE;
}
if( SECURE_ELEMENT_SUCCESS != GetKeyIndexByID( keyID, &key_handle ) )
{
return SECURE_ELEMENT_ERROR;
}
if( SECURE_ELEMENT_SUCCESS != SecureElementDeleteDynamicKey( keyID, &specific_label[1] ) )
{
return SECURE_ELEMENT_ERROR;
}
/* Open session with KMS */
rv = C_OpenSession( 0, session_flags, NULL, 0, &session );
/* Get key to display */
if( rv == CKR_OK )
{
rv = C_CreateObject( session, attribute_template, GET_NB_ATTRIBUTE( attribute_template ),
&key_handle );
}
if( rv == CKR_OK )
{
retval = SecureElementSetObjHandler( keyID, key_handle );
}
/* Close sessions */
( void )C_CloseSession( session );
if( rv != CKR_OK )
{
retval = SECURE_ELEMENT_ERROR;
}
return retval;
#endif /* LORAWAN_KMS */
}
SecureElementStatus_t SecureElementComputeAesCmac( uint8_t *micBxBuffer, uint8_t *buffer, uint32_t size,
KeyIdentifier_t keyID, uint32_t *cmac )
{
if( keyID >= MC_KE_KEY )
{
/* Never accept multicast key identifier for cmac computation */
return SECURE_ELEMENT_ERROR_INVALID_KEY_ID;
}
return ComputeCmac( micBxBuffer, buffer, size, keyID, cmac );
}
SecureElementStatus_t SecureElementVerifyAesCmac( uint8_t *buffer, uint32_t size, uint32_t expectedCmac,
KeyIdentifier_t keyID )
{
if( buffer == NULL )
{
return SECURE_ELEMENT_ERROR_NPE;
}
SecureElementStatus_t retval = SECURE_ELEMENT_ERROR;
#if (LORAWAN_KMS == 0)
uint32_t compCmac = 0;
retval = ComputeCmac( NULL, buffer, size, keyID, &compCmac );
if( retval != SECURE_ELEMENT_SUCCESS )
{
return retval;
}
if( expectedCmac != compCmac )
{
retval = SECURE_ELEMENT_FAIL_CMAC;
}
#else /* LORAWAN_KMS == 1 */
CK_RV rv;
CK_SESSION_HANDLE session;
CK_FLAGS session_flags = CKF_SERIAL_SESSION; /* Read ONLY session */
CK_OBJECT_HANDLE object_handle;
if( buffer == NULL )
{
return SECURE_ELEMENT_ERROR_NPE;
}
/* AES CMAC Authentication variables */
CK_MECHANISM aes_cmac_mechanism = { CKM_AES_CMAC, ( CK_VOID_PTR )NULL, 0 };
retval = GetKeyIndexByID( keyID, &object_handle );
if( retval != SECURE_ELEMENT_SUCCESS )
{
return retval;
}
/* Open session with KMS */
rv = C_OpenSession( 0, session_flags, NULL, 0, &session );
/* Configure session to Verify the message in AES CMAC with settings included into the mechanism */
if( rv == CKR_OK )
{
rv = C_VerifyInit( session, &aes_cmac_mechanism, object_handle );
}
/* Verify the message */
if( rv == CKR_OK )
{
memcpy1( input_align_combined_buf, buffer, size );
rv = C_Verify( session, ( CK_BYTE_PTR )input_align_combined_buf, size, ( CK_BYTE_PTR )&expectedCmac, 4 );
}
( void )C_CloseSession( session );
if( rv != CKR_OK )
{
retval = SECURE_ELEMENT_ERROR;
}
#endif /* LORAWAN_KMS */
return retval;
}
SecureElementStatus_t SecureElementAesEncrypt( uint8_t *buffer, uint32_t size, KeyIdentifier_t keyID,
uint8_t *encBuffer )
{
if( ( buffer == NULL ) || ( encBuffer == NULL ) )
{
return SECURE_ELEMENT_ERROR_NPE;
}
/* Check if the size is divisible by 16 */
if( ( size % 16 ) != 0 )
{
return SECURE_ELEMENT_ERROR_BUF_SIZE;
}
#if (LORAWAN_KMS == 0)
lorawan_aes_context aesContext;
memset1( aesContext.ksch, '\0', 240 );
Key_t *pItem;
SecureElementStatus_t retval = GetKeyByID( keyID, &pItem );
if( retval == SECURE_ELEMENT_SUCCESS )
{
lorawan_aes_set_key( pItem->KeyValue, SE_KEY_SIZE, &aesContext );
uint8_t block = 0;
while( size != 0 )
{
lorawan_aes_encrypt( &buffer[block], &encBuffer[block], &aesContext );
block = block + 16;
size = size - 16;
}
}
#else /* LORAWAN_KMS == 1 */
CK_RV rv;
CK_SESSION_HANDLE session;
CK_FLAGS session_flags = CKF_SERIAL_SESSION; /* Read ONLY session */
uint32_t encrypted_length = 0;
CK_OBJECT_HANDLE object_handle;
uint8_t dummy_tag[SE_KEY_SIZE] = {0};
uint32_t dummy_tag_length = 0;
CK_MECHANISM aes_ecb_mechanism = { CKM_AES_ECB, ( CK_VOID_PTR * ) NULL, 0 };
SecureElementStatus_t retval = GetKeyIndexByID( keyID, &object_handle );
if( retval != SECURE_ELEMENT_SUCCESS )
{
return retval;
}
/* Open session with KMS */
rv = C_OpenSession( 0, session_flags, NULL, 0, &session );
/* Configure session to encrypt message in AES ECB with settings included into the mechanism */
if( rv == CKR_OK )
{
rv = C_EncryptInit( session, &aes_ecb_mechanism, object_handle );
}
/* Encrypt clear message */
if( rv == CKR_OK )
{
memcpy1( input_align_combined_buf, buffer, size );
encrypted_length = sizeof( output_align );
rv = C_EncryptUpdate( session, ( CK_BYTE_PTR )input_align_combined_buf, size,
output_align, ( CK_ULONG_PTR )&encrypted_length );
memcpy1( encBuffer, output_align, size );
}
/* In this case C_EncryptFinal is just called to Free the Alloc mem */
if( rv == CKR_OK )
{
dummy_tag_length = sizeof( tag );
rv = C_EncryptFinal( session, &dummy_tag[0], ( CK_ULONG_PTR )&dummy_tag_length );
}
/* Close session with KMS */
( void )C_CloseSession( session );
if( rv != CKR_OK )
{
retval = SECURE_ELEMENT_ERROR;
}
#endif /* LORAWAN_KMS */
return retval;
}
SecureElementStatus_t SecureElementDeriveAndStoreKey( uint8_t *input, KeyIdentifier_t rootKeyID,
KeyIdentifier_t targetKeyID )
{
if( input == NULL )
{
return SECURE_ELEMENT_ERROR_NPE;
}
SecureElementStatus_t retval = SECURE_ELEMENT_ERROR;
/* In case of MC_KE_KEY, only McRootKey can be used as root key */
if( targetKeyID == MC_KE_KEY )
{
if( rootKeyID != MC_ROOT_KEY )
{
return SECURE_ELEMENT_ERROR_INVALID_KEY_ID;
}
}
#if (LORAWAN_KMS == 0)
uint8_t key[SE_KEY_SIZE] = { 0 };
/* Derive key */
retval = SecureElementAesEncrypt( input, SE_KEY_SIZE, rootKeyID, key );
if( retval != SECURE_ELEMENT_SUCCESS )
{
return retval;
}
/* Store key */
retval = SecureElementSetKey( targetKeyID, key );
if( retval != SECURE_ELEMENT_SUCCESS )
{
return retval;
}
return SECURE_ELEMENT_SUCCESS;
#else /* LORAWAN_KMS == 1 */
CK_RV rv;
CK_SESSION_HANDLE session;
CK_FLAGS session_flags = CKF_SERIAL_SESSION; /* Read ONLY session */
/* Key derivation */
CK_MECHANISM mech = {CKM_AES_ECB_ENCRYPT_DATA, input, SE_KEY_SIZE};
CK_OBJECT_HANDLE derived_object_handle;
CK_OBJECT_HANDLE rootkey_object_handle;
uint32_t specific_label[] = {GlobalTemplateLabel, 0UL};
CK_ATTRIBUTE DeriveKey_template = {CKA_LABEL, ( CK_VOID_PTR )specific_label, sizeof( specific_label )};
/* Derive key */
if( SECURE_ELEMENT_SUCCESS != GetKeyIndexByID( rootKeyID, &rootkey_object_handle ) )
{
return SECURE_ELEMENT_ERROR;
}
if( SECURE_ELEMENT_SUCCESS != GetKeyIndexByID( targetKeyID, &derived_object_handle ) )
{
return SECURE_ELEMENT_ERROR;
}
if( SECURE_ELEMENT_SUCCESS != SecureElementDeleteDynamicKey( targetKeyID, &specific_label[1] ) )
{
return SECURE_ELEMENT_ERROR;
}
/* Open session with KMS */
rv = C_OpenSession( 0, session_flags, NULL, 0, &session );
/* Derive key with pass phrase */
if( rv == CKR_OK )
{
rv = C_DeriveKey( session, &( mech ), rootkey_object_handle,
&DeriveKey_template, GET_NB_ATTRIBUTE( DeriveKey_template ), &derived_object_handle );
}
if( rv == CKR_OK )
{
/* Store Derived Index in table */
retval = SecureElementSetObjHandler( targetKeyID, derived_object_handle );
}
/* Close session with KMS */
( void )C_CloseSession( session );
if( rv != CKR_OK )
{
retval = SECURE_ELEMENT_ERROR;
}
return retval;
#endif /* LORAWAN_KMS */
}
SecureElementStatus_t SecureElementProcessJoinAccept( JoinReqIdentifier_t joinReqType, uint8_t *joinEui,
uint16_t devNonce, uint8_t *encJoinAccept,
uint8_t encJoinAcceptSize, uint8_t *decJoinAccept,
uint8_t *versionMinor )
{
if( ( encJoinAccept == NULL ) || ( decJoinAccept == NULL ) || ( versionMinor == NULL ) )
{
return SECURE_ELEMENT_ERROR_NPE;
}
/* Check that frame size isn't bigger than a JoinAccept with CFList size */
if( encJoinAcceptSize > LORAMAC_JOIN_ACCEPT_FRAME_MAX_SIZE )
{
return SECURE_ELEMENT_ERROR_BUF_SIZE;
}
/* Determine decryption key */
KeyIdentifier_t encKeyID = NWK_KEY;
#if (defined( LORAMAC_VERSION ) && ( LORAMAC_VERSION == 0x01010100 ))
if( joinReqType != JOIN_REQ )
{
encKeyID = J_S_ENC_KEY;
}
#endif /* LORAMAC_VERSION */
memcpy1( decJoinAccept, encJoinAccept, encJoinAcceptSize );
/* Decrypt JoinAccept, skip MHDR */
if( SecureElementAesEncrypt( encJoinAccept + LORAMAC_MHDR_FIELD_SIZE, encJoinAcceptSize - LORAMAC_MHDR_FIELD_SIZE,
encKeyID, decJoinAccept + LORAMAC_MHDR_FIELD_SIZE ) != SECURE_ELEMENT_SUCCESS )
{
return SECURE_ELEMENT_FAIL_ENCRYPT;
}
*versionMinor = ( ( decJoinAccept[11] & 0x80 ) == 0x80 ) ? 1 : 0;
uint32_t mic = GET_UINT32_LE( decJoinAccept, encJoinAcceptSize - LORAMAC_MIC_FIELD_SIZE );
/* - Header buffer to be used for MIC computation
* - LoRaWAN 1.0.x : micHeader = [MHDR(1)]
* - LoRaWAN 1.1.x : micHeader = [JoinReqType(1), JoinEUI(8), DevNonce(2), MHDR(1)]
*/
/* Verify mic */
if( *versionMinor == 0 )
{
/* For LoRaWAN 1.0.x
* cmac = aes128_cmac(NwkKey, MHDR | JoinNonce | NetID | DevAddr | DLSettings | RxDelay | CFList |
* CFListType)
*/
if( SecureElementVerifyAesCmac( decJoinAccept, ( encJoinAcceptSize - LORAMAC_MIC_FIELD_SIZE ), mic, NWK_KEY ) !=
SECURE_ELEMENT_SUCCESS )
{
return SECURE_ELEMENT_FAIL_CMAC;
}
}
#if (defined( LORAMAC_VERSION ) && ( LORAMAC_VERSION == 0x01010100 ))
else if( *versionMinor == 1 )
{
uint8_t micHeader11[JOIN_ACCEPT_MIC_COMPUTATION_OFFSET] = { 0 };
uint16_t bufItr = 0;
micHeader11[bufItr++] = ( uint8_t ) joinReqType;
memcpyr( micHeader11 + bufItr, joinEui, LORAMAC_JOIN_EUI_FIELD_SIZE );
bufItr += LORAMAC_JOIN_EUI_FIELD_SIZE;
micHeader11[bufItr++] = devNonce & 0xFF;
micHeader11[bufItr++] = ( devNonce >> 8 ) & 0xFF;
/* For LoRaWAN 1.1.x and later:
* cmac = aes128_cmac(JSIntKey, JoinReqType | JoinEUI | DevNonce | MHDR | JoinNonce | NetID | DevAddr |
* DLSettings | RxDelay | CFList | CFListType)
* Prepare the msg for integrity check (adding JoinReqType, JoinEUI and DevNonce)
*/
uint8_t localBuffer[LORAMAC_JOIN_ACCEPT_FRAME_MAX_SIZE + JOIN_ACCEPT_MIC_COMPUTATION_OFFSET] = { 0 };
memcpy1( localBuffer, micHeader11, JOIN_ACCEPT_MIC_COMPUTATION_OFFSET );
memcpy1( localBuffer + JOIN_ACCEPT_MIC_COMPUTATION_OFFSET - 1, decJoinAccept, encJoinAcceptSize );
if( SecureElementVerifyAesCmac( localBuffer,
encJoinAcceptSize + JOIN_ACCEPT_MIC_COMPUTATION_OFFSET -
LORAMAC_MHDR_FIELD_SIZE - LORAMAC_MIC_FIELD_SIZE,
mic, J_S_INT_KEY ) != SECURE_ELEMENT_SUCCESS )
{
return SECURE_ELEMENT_FAIL_CMAC;
}
}
#endif /* LORAMAC_VERSION */
else
{
return SECURE_ELEMENT_ERROR_INVALID_LORAWAM_SPEC_VERSION;
}
return SECURE_ELEMENT_SUCCESS;
}
#if (defined( LORAMAC_VERSION ) && ( LORAMAC_VERSION == 0x01000300 ))
SecureElementStatus_t SecureElementRandomNumber( uint32_t *randomNum )
{
if( randomNum == NULL )
{
return SECURE_ELEMENT_ERROR_NPE;
}
*randomNum = Radio.Random();
return SECURE_ELEMENT_SUCCESS;
}
#endif /* LORAMAC_VERSION */
SecureElementStatus_t SecureElementSetDevEui( uint8_t *devEui )
{
if( devEui == NULL )
{
return SECURE_ELEMENT_ERROR_NPE;
}
#if (LORAWAN_KMS == 0)
memcpy1( SeNvm->SeNvmDevJoinKey.DevEui, devEui, SE_EUI_SIZE );
return SECURE_ELEMENT_SUCCESS;
#else
SecureElementStatus_t status;
SecureElementNvmDevJoinAddrKey_t KMSKeyBlob ALIGN( 8 );
/* recover whole KMSKeyBlob handle */
status = SecureElementGetKeyByID( DEV_JOIN_EUI_ADDR_KEY, ( uint8_t * )&KMSKeyBlob );
if( ( status == SECURE_ELEMENT_SUCCESS ) && ( memcmp( KMSKeyBlob.DevEui, devEui, SE_EUI_SIZE ) != 0 ) )
{
memcpy1( KMSKeyBlob.DevEui, devEui, SE_EUI_SIZE );
status = SecureElementSetID( &KMSKeyBlob );
}
return status;
#endif /* LORAWAN_KMS */
}
SecureElementStatus_t SecureElementGetDevEui( uint8_t *devEui )
{
if( devEui == NULL )
{
return SECURE_ELEMENT_ERROR_NPE;
}
#if (LORAWAN_KMS == 0)
memcpy1( devEui, SeNvm->SeNvmDevJoinKey.DevEui, SE_EUI_SIZE );
return SECURE_ELEMENT_SUCCESS;
#else
SecureElementStatus_t status;
SecureElementNvmDevJoinAddrKey_t KMSKeyBlob ALIGN( 8 );
status = SecureElementGetKeyByID( DEV_JOIN_EUI_ADDR_KEY, ( uint8_t * )&KMSKeyBlob );
if( status == SECURE_ELEMENT_SUCCESS )
{
/* get DevEui field in KMSKeyBlob handle */
memcpy1( devEui, KMSKeyBlob.DevEui, SE_EUI_SIZE );
}
return status;
#endif /* LORAWAN_KMS */
}
SecureElementStatus_t SecureElementSetJoinEui( uint8_t *joinEui )
{
if( joinEui == NULL )
{
return SECURE_ELEMENT_ERROR_NPE;
}
#if (LORAWAN_KMS == 0)
memcpy1( SeNvm->SeNvmDevJoinKey.JoinEui, joinEui, SE_EUI_SIZE );
return SECURE_ELEMENT_SUCCESS;
#else
SecureElementStatus_t status;
SecureElementNvmDevJoinAddrKey_t KMSKeyBlob ALIGN( 8 );
/* recover whole KMSKeyBlob handle */
status = SecureElementGetKeyByID( DEV_JOIN_EUI_ADDR_KEY, ( uint8_t * )&KMSKeyBlob );
if( ( status == SECURE_ELEMENT_SUCCESS ) && ( memcmp( KMSKeyBlob.JoinEui, joinEui, SE_EUI_SIZE ) != 0 ) )
{
memcpy1( KMSKeyBlob.JoinEui, joinEui, SE_EUI_SIZE );
status = SecureElementSetID( &KMSKeyBlob );
}
return status;
#endif /* LORAWAN_KMS */
}
SecureElementStatus_t SecureElementGetJoinEui( uint8_t *joinEui )
{
if( joinEui == NULL )
{
return SECURE_ELEMENT_ERROR_NPE;
}
#if (LORAWAN_KMS == 0)
memcpy1( joinEui, SeNvm->SeNvmDevJoinKey.JoinEui, SE_EUI_SIZE );
return SECURE_ELEMENT_SUCCESS;
#else
SecureElementStatus_t status;
SecureElementNvmDevJoinAddrKey_t KMSKeyBlob ALIGN( 8 );
status = SecureElementGetKeyByID( DEV_JOIN_EUI_ADDR_KEY, ( uint8_t * )&KMSKeyBlob );
if( status == SECURE_ELEMENT_SUCCESS )
{
/* get JoinEui field from KMSKeyBlob handle */
memcpy1( joinEui, KMSKeyBlob.JoinEui, SE_EUI_SIZE );
}
return status;
#endif /* LORAWAN_KMS */
}
SecureElementStatus_t SecureElementSetDevAddr( ActivationType_t mode, uint32_t devAddr )
{
#if (LORAWAN_KMS == 0)
if( mode == ACTIVATION_TYPE_OTAA )
{
SeNvm->SeNvmDevJoinKey.DevAddrOTAA = devAddr;
}
else
{
SeNvm->SeNvmDevJoinKey.DevAddrABP = devAddr;
}
return SECURE_ELEMENT_SUCCESS;
#else
SecureElementStatus_t status;
SecureElementNvmDevJoinAddrKey_t KMSKeyBlob ALIGN( 8 );
/* recover whole KMSKeyBlob handle */
status = SecureElementGetKeyByID( DEV_JOIN_EUI_ADDR_KEY, ( uint8_t * )&KMSKeyBlob );
if( status == SECURE_ELEMENT_SUCCESS )
{
/* Recover DevAddrABP or DevAddrOTAA depending on mode */
if( mode == ACTIVATION_TYPE_OTAA )
{
if( KMSKeyBlob.DevAddrOTAA != devAddr )
{
KMSKeyBlob.DevAddrOTAA = devAddr;
status = SecureElementSetID( &KMSKeyBlob );
}
}
else
{
/* ABP or Not yet joined: set devAddrABP */
if( KMSKeyBlob.DevAddrABP != devAddr )
{
KMSKeyBlob.DevAddrABP = devAddr;
status = SecureElementSetID( &KMSKeyBlob );
}
}
}
return status;
#endif /* LORAWAN_KMS */
}
SecureElementStatus_t SecureElementGetDevAddr( ActivationType_t mode, uint32_t *devAddr )
{
if( devAddr == NULL )
{
return SECURE_ELEMENT_ERROR_NPE;
}
#if (LORAWAN_KMS == 0)
/* Recover DevAddrABP or DevAddrOTAA depending on mode */
if( mode == ACTIVATION_TYPE_OTAA )
{
*devAddr = SeNvm->SeNvmDevJoinKey.DevAddrOTAA;
}
else
{
*devAddr = SeNvm->SeNvmDevJoinKey.DevAddrABP;
}
return SECURE_ELEMENT_SUCCESS;
#else
SecureElementStatus_t status;
SecureElementNvmDevJoinAddrKey_t KMSKeyBlob ALIGN( 8 );
/* recover whole KMSKeyBlob handle */
status = SecureElementGetKeyByID( DEV_JOIN_EUI_ADDR_KEY, ( uint8_t * )&KMSKeyBlob );
if( status == SECURE_ELEMENT_SUCCESS )
{
/* Recover DevAddrABP or DevAddrOTAA depending on mode */
if( mode == ACTIVATION_TYPE_OTAA )
{
*devAddr = KMSKeyBlob.DevAddrOTAA;
}
else
{
*devAddr = KMSKeyBlob.DevAddrABP;
}
}
return status;
#endif /* LORAWAN_KMS */
}