STS_RR_R125/mlx90640/mlx90640_lcd_display.c

417 lines
13 KiB
C

#include <string.h>
#include "mlx90640_lcd_display.h"
#include "stm32_hx8347d_lcd.h"
#include "MLX90640_API.h"
#include "MLX90640_I2C_Driver.h"
#include "sys_app.h"
#include "yunhorn_sts_sensors.h"
//#include "bmp.h"
#define FPS_HALF_HZ 0x00
#define FPS1HZ 0x01
#define FPS2HZ 0x02
#define FPS4HZ 0x03
#define FPS8HZ 0x04
#define FPS16HZ 0x05
#define FPS32HZ 0x06
#define DetectCycleCount 8
#define MLX90640_ADDR 0x33
#define RefreshRate FPS4HZ //FPS1HZ //was FPS2HZ
#define EMMISIVITY 0.96f //water Emisivity=0.96, human body == 0.92f
#define TA_SHIFT 8 //Default shift for MLX90640 in open air
#define WATER_DETECT 0x01
#define HUMAN_DETECT 0x02
paramsMLX90640 mlx90640;
static uint16_t eeMLX90640[832];
int status;
volatile uint8_t draw_legend_once=0, blackOutTag=0;
// The following be stored in NVM
volatile uint8_t averageTempThreshold;
volatile uint8_t emmisivityThreshold= (EMMISIVITY*100); // 96/100 = 0.96f
volatile uint8_t humanTempThreshold = 32;
volatile uint8_t waterTempThreshold=15; //15/10= 1.5 C
volatile uint8_t thermalDetectTag = WATER_DETECT;
// The Above be stored in NVM
volatile uint8_t normalWaterTemp=25; // 25 C
volatile uint16_t detectCycle=0, v_water_cnt=0,h_water_cnt=0, spot_cnt=0;
// start with some initial colors
volatile float minTemp = -20.0f;
volatile float maxTemp = 120.0f;
volatile float centerTemp=0.0f;
volatile float averageTemp=0.0f;
volatile float averageTempInner=0.0f;
volatile uint16_t waterSpillCount=0;
volatile uint16_t humanSpotCount=0;
extern volatile uint8_t sensor_data_ready;
extern volatile float env_temperature;
char tempBuffer[256];
// variables for interpolated colors
uint8_t red, green, blue;
// variables for row/column interpolation
float intPoint, val, a, b, c, d, ii;
int x, y, i, j;
// array for the 32 x 24 measured tempValues
#define ROW 24
#define COL 32
static float tempValues[COL*ROW];
volatile uint16_t zoneMask[ROW*COL]={0x0}, edgeMask[ROW*COL]={0x0}, upMask[ROW/3][COL/3]={0x0}, order[(ROW/3)*(COL/3)]={0x0};
volatile STS_M1A_SensorDataTypeDef m1a_data;
void blackOutFilter(void);
static void setTempScale(void);
static void setAbcd(void);
static void findFocusArea(void);
static void readTempValues(void);
static void sortFocusAreas(void);
static void bubbleSort(uint16_t arr[], uint16_t len, uint16_t order[]);
static void setTempScale(void) {
minTemp = 255;
maxTemp = 0;
averageTemp =0.0f;
averageTempInner =0.0f;
float sumtemp=0.0f;
float sumtempinner=0.0f;
for (i = 0; i < 768; i++)
{
//averageTemp += tempValues[i];
sumtemp += tempValues[i];
if (((uint8_t)(i/32) > 1)&& ((uint8_t)(i/32) <22) && ((uint8_t)(i%32) >1) && ((uint8_t)(i%32) <30))
{
sumtempinner += (float)tempValues[i];
}
minTemp = (float)min(minTemp, tempValues[i]);
maxTemp = (float)max(maxTemp, tempValues[i]);
}
//averageTemp /= 768;
averageTemp = sumtemp / (float)768.0;
averageTempInner = sumtempinner / (float)560.0; //28*20 inner round area
centerTemp = (float) ((tempValues[383 - 16] + tempValues[383 - 15] + tempValues[384 + 15] + tempValues[384 + 16]) / 4);
if (maxTemp > (float)humanTempThreshold)
{
blackOutTag = 1;
} else {
blackOutTag = 0;
}
setAbcd();
}
// Function to get the cutoff points in the temp vs RGB graph.
static void setAbcd(void) {
a = minTemp + (maxTemp - minTemp) * 0.2121f;
b = minTemp + (maxTemp - minTemp) * 0.3182f;
c = minTemp + (maxTemp - minTemp) * 0.4242f;
d = minTemp + (maxTemp - minTemp) * 0.8182f;
}
static void findFocusArea(void)
{
uint16_t h_cnt[COL]={0},v_cnt[ROW]={0}; //for horizon and vertical _water spill count
// start from 2, ignore edge of FOV
for (y=1; y<ROW-1; y++)
{
for (x=1; x<COL-1; x++) // Start from 2, ignore edge of FOV
{
if (zoneMask[y*COL+x] > 3) {
upMask[(uint8_t)(y/3)][(uint8_t)(x/3)] ++; //translate to 11*8 matrix for upload
h_cnt[x] =1;
v_cnt[y] =1;
}
}
}
// simple count of water spill point cloud
v_water_cnt=0;
h_water_cnt=0;
uint8_t v_1=0, v_2=0,h_1=0,h_2=0;
for (y=1; y<ROW/2; y++) {
if ((1 == v_cnt[y]) && (0 == v_cnt[y-1])) {
v_1++;
}
}
for (y=12; y<ROW; y++) {
if ((1 == v_cnt[y]) && (0 == v_cnt[y-1])) {
v_2++;
}
}
v_water_cnt= v_1 + v_2;
for (x=1; x<COL/2; x++) {
if ((1 == h_cnt[x]) && (0 == h_cnt[x-1])) {
h_1 ++;
}
}
for (x=16; x<COL; x++) {
if ((1 == h_cnt[x]) && (0 == h_cnt[x-1])) {
h_2 ++;
}
}
h_water_cnt = h_1 + h_2;
spot_cnt += max(h_water_cnt, v_water_cnt);
// APP_LOG(TS_OFF, VLEVEL_L, " H cnt = %2u V cnt =%2u Spot Cnt=%2u \r\n", h_water_cnt, v_water_cnt, spot_cnt);
}
// Read pixel data from MLX90640.
static void readTempValues(void)
{
for (uint8_t x = 0 ; x < 2 ; x++) // Read both subpages
{
uint16_t mlx90640Frame[834];
status = MLX90640_GetFrameData(MLX90640_ADDR, mlx90640Frame);
if (status < 0)
{
APP_LOG(TS_OFF, VLEVEL_L, "GetFrame Error: %d\r\n",status);
}
float vdd = MLX90640_GetVdd(mlx90640Frame, &mlx90640);
float Ta = MLX90640_GetTa(mlx90640Frame, &mlx90640);
float tr = Ta - TA_SHIFT; //Reflected temperature based on the sensor ambient temperature
//MLX90640_CalculateTo(mlx90640Frame, &mlx90640, EMMISIVITY, tr, tempValues);
MLX90640_CalculateTo(mlx90640Frame, &mlx90640, (float)(emmisivityThreshold/100.0), tr, tempValues);
}
}
static void sortFocusAreas(void)
{
float temp1=0.0;
if ((maxTemp > humanTempThreshold)&&(thermalDetectTag==WATER_DETECT))
{
blackOutTag =1;
} else
{
blackOutTag =0;
}
// ignore edge of FOV
waterSpillCount = 0;
humanSpotCount = 0;
for (y=1; y<ROW; y++)
{
for (x=1; x<COL; x++)
{
temp1 = (float)tempValues[(x)+(y*COL)];
if (thermalDetectTag == WATER_DETECT)
{
if ((temp1 + (float)(waterTempThreshold / 10.0)) < (float)(min(averageTemp, env_temperature))) // was max(averageTemp, env_temperature))
{
if (blackOutTag == 0)
{
zoneMask[y*COL+x] ++;
upMask[(uint8_t)(y/3)][(uint8_t)(x/3)] ++; //translate to 11*8 matrix for upload
waterSpillCount ++;
}
}
} else if (thermalDetectTag == HUMAN_DETECT) {
if ((temp1 > (float) humanTempThreshold)&&(temp1 <(float) (humanTempThreshold+6.0))) {
zoneMask[y*COL+x] ++;
upMask[(uint8_t)(y/3)][(uint8_t)(x/3)] ++; //translate to 11*8 matrix for upload
humanSpotCount ++;
}
}
}
}
}
void STS_M1A_SENSOR_Read(STS_M1A_SensorDataTypeDef *m1a_data)
{
m1a_data->thermalDetectTag = thermalDetectTag;
m1a_data->waterSpillCount = blackOutTag==0?waterSpillCount:0;
m1a_data->humanSpotCount = humanSpotCount;
m1a_data->humanSpot_level = (uint8_t)((m1a_data->humanSpotCount)*99/768.0);
m1a_data->spillage_level = (uint8_t)((m1a_data->waterSpillCount)*99/768.0); //((ROW-2)*(COL-2))); // (24-4) * (32 -4) minus edge dots
m1a_data->averageTemp = averageTemp;
m1a_data->averageTempInner = averageTempInner;
m1a_data->centerTemp = centerTemp;
m1a_data->minTemp = minTemp;
m1a_data->maxTemp = maxTemp;
m1a_data->v_water_cnt = v_water_cnt;
m1a_data->h_water_cnt = h_water_cnt;
spot_cnt = max(v_water_cnt, h_water_cnt);
m1a_data->spot_cnt = blackOutTag ==0? spot_cnt:0; //max(v_water_cnt, h_water_cnt);
// TODO XXXX for fall detection logic
m1a_data->detectedEvent = (m1a_data->spot_cnt>0)? 1:0; //fall detection or water spillage detection result
uint8_t i=0;
if ((spot_cnt != 0) && (blackOutTag == 0)) {
bubbleSort((void *)upMask, 80, (void *)order);
for (i= spot_cnt; i< 80;i++) {
order[i] = 0;
}
} else {
for (i= 0; i< 80;i++) {
order[i] = 0;
}
}
// MIRROR REVERT OF MATRIX
for (i=0; i<spot_cnt;i++)
{
order[i]= 10*((order[i]+10)/10)+ (9 - ((order[i])%10));
}
memcpy((void *)m1a_data->order, (const void *)order, sizeof(order));
memset(tempBuffer,0x0,sizeof(tempBuffer));
if (thermalDetectTag == WATER_DETECT)
{
sprintf(tempBuffer,(char *)"\r\n## Blackout=%u ######\n##Read Sensor Spot CNT=%4d (areas), \r\n Env_Temp =%2.2f C \r\n## V_cnt=%2d (lane) H_cnt=%2d (lane)\r\n## Spillage Level =%u %% \r\n## averageTempInner=%02.2f C averageTemp=%02.2f C, centerTemp=%2.2f C MinTemp=%2.2f C maxTemp=%2.2f C \r\n",
(uint8_t)blackOutTag, (uint16_t)(m1a_data->waterSpillCount), (float)env_temperature, (int)v_water_cnt, (int)h_water_cnt, (uint8_t)(m1a_data->spillage_level), (float)averageTempInner, (float)averageTemp, (float)centerTemp, (float)minTemp, (float)maxTemp);
} else if (thermalDetectTag == HUMAN_DETECT)
{
sprintf(tempBuffer,(char *)"\r\n######Read Sensor Spot CNT=%4d (areas), \r\n Env_Temp =%2.2f C \r\n## V_cnt=%2d (lane) H_cnt=%2d (lane)\r\n## Spillage Level =%u %% \r\n## averageTempInner=%02.2f C averageTemp=%02.2f C, centerTemp=%2.2f C MinTemp=%2.2f C maxTemp=%2.2f C \r\n",
(uint16_t)(m1a_data->humanSpotCount), (float)env_temperature, (int)v_water_cnt, (int)h_water_cnt, (uint8_t)(m1a_data->humanSpot_level), (float)averageTempInner, (float)averageTemp, (float)centerTemp, (float)minTemp, (float)maxTemp);
}
APP_LOG(TS_OFF, VLEVEL_H,(char *)tempBuffer);
sprintf(tempBuffer,(char *)"\r\n######## Gap_Average= %2.2f C Gap_Inner =%2.2f C\r\n ##### Thermal Detect Tag =%s \r\n Human Body Threshold=%2.2f C WaterThreshold=%2.2f C\r\n",(float)(averageTemp - minTemp),(float)(averageTempInner - minTemp), ((thermalDetectTag == WATER_DETECT)? "Water Detect":"Human Detect"), (float)humanTempThreshold, (float)(waterTempThreshold/10));
APP_LOG(TS_OFF, VLEVEL_H,(char *)tempBuffer);
if ((m1a_data->spot_cnt !=0 ))
{
if ((blackOutTag == 0) || (thermalDetectTag == HUMAN_DETECT))
{
for (uint8_t i=0; i< 4; i++)
{
memset(tempBuffer,0x0,sizeof(tempBuffer));
sprintf(tempBuffer, (char *) " Top {%2u} : order =%2u X=%2u : Y=%2u \r\n", (uint8_t)i, (int)(order[i]),
(int)(order[i]%(10)), (int)(order[i]/10));
APP_LOG(TS_OFF, VLEVEL_H,(char *)tempBuffer);
}
}
}
sensor_data_ready = 1;
}
void mlx90640_display_process(void)
{
memset((void *)zoneMask, 0,sizeof(zoneMask));
memset((void *)edgeMask, 0, sizeof(edgeMask));
memset((void *)upMask, 0, sizeof(upMask));
detectCycle = 0;
uint16_t spillcountTemp =0, spot_cntTemp=0;
uint16_t humanspotcountTemp =0;
do {
readTempValues();
setTempScale();
sortFocusAreas();
findFocusArea();
spillcountTemp += waterSpillCount;
humanspotcountTemp += humanSpotCount;
spot_cntTemp += spot_cnt;
} while (++detectCycle < DetectCycleCount);
waterSpillCount = (uint16_t) (spillcountTemp/DetectCycleCount);
humanSpotCount = (uint16_t) (humanspotcountTemp/DetectCycleCount);
spot_cnt /= DetectCycleCount ; //max(v_water_cnt, h_water_cnt);
if ((blackOutTag == 0)&& (thermalDetectTag == WATER_DETECT))
{
APP_LOG(TS_OFF, VLEVEL_H, "Water Spill Detected Level = %u of 768 \r\n", (uint16_t)waterSpillCount);
}
else if (thermalDetectTag == HUMAN_DETECT)
{
APP_LOG(TS_OFF, VLEVEL_H, "Human Spot Detected Level = %u of 768 \r\n", (uint16_t)humanSpotCount);
}
}
uint8_t mlx90640_bringup_test(void)
{
status = MLX90640_DumpEE(MLX90640_ADDR, eeMLX90640);
return (status==0?1:0);
}
void mlx90640_display_init(void){
MLX90640_SetRefreshRate(MLX90640_ADDR, RefreshRate);
MLX90640_SetChessMode(MLX90640_ADDR);
status = MLX90640_DumpEE(MLX90640_ADDR, eeMLX90640);
if (status != 0) APP_LOG(TS_OFF, VLEVEL_L, "\r\nload system parameters error with code:%d\r\n",status);
status = MLX90640_ExtractParameters(eeMLX90640, &mlx90640);
if (status != 0) APP_LOG(TS_OFF, VLEVEL_L, "\r\nParameter extraction failed with error code:%d\r\n",status);
}
void STS_SENSOR_Thermal_Graph_Test_Process(float *self_test_result, uint8_t count)
{
mlx90640_display_init();
readTempValues();
setTempScale();
self_test_result[0] = averageTemp;
self_test_result[1] = centerTemp;
self_test_result[2] = minTemp;
self_test_result[3] = maxTemp;
#if 0
memset(tempBuffer,0,sizeof(tempBuffer));
sprintf(tempBuffer,(char *)"Upload ============ Calibrated Temp Average=%2.2fC Center=%2.2fC Min=%2.2fC Max=%2.2fC \r\n",
(float)self_test_result[0], (float)self_test_result[1], (float)self_test_result[2], (float)self_test_result[3]);
APP_LOG(TS_OFF, VLEVEL_L,(char *)tempBuffer);
#endif
}
static void bubbleSort(uint16_t arr[], uint16_t len, uint16_t order[])
{
uint16_t i, j, temp, t1;
for (j=0; j < len ; j++) {
order[j] = j;
}
for (i = 0; i < len - 1; i++) {
for (j = 0; j < len - i - 1; j++) {
if (arr[j] < arr[j + 1]) {
temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
t1 = order[j];
order[j]=order[j+1];
order[j+1]=t1;
}
}
}
}