2240 lines
64 KiB
C
2240 lines
64 KiB
C
/*******************************************************************************
|
|
Copyright © 2016, STMicroelectronics International N.V.
|
|
All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are met:
|
|
* Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
* Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
* Neither the name of STMicroelectronics nor the
|
|
names of its contributors may be used to endorse or promote products
|
|
derived from this software without specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
|
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND
|
|
NON-INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS ARE DISCLAIMED.
|
|
IN NO EVENT SHALL STMICROELECTRONICS INTERNATIONAL N.V. BE LIABLE FOR ANY
|
|
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
|
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
******************************************************************************/
|
|
|
|
#include "vl53l0x_api.h"
|
|
#include "vl53l0x_api_core.h"
|
|
#include "vl53l0x_api_calibration.h"
|
|
|
|
|
|
#ifndef __KERNEL__
|
|
#include <stdlib.h>
|
|
#endif
|
|
#define LOG_FUNCTION_START(fmt, ...) \
|
|
_LOG_FUNCTION_START(TRACE_MODULE_API, fmt, ##__VA_ARGS__)
|
|
#define LOG_FUNCTION_END(status, ...) \
|
|
_LOG_FUNCTION_END(TRACE_MODULE_API, status, ##__VA_ARGS__)
|
|
#define LOG_FUNCTION_END_FMT(status, fmt, ...) \
|
|
_LOG_FUNCTION_END_FMT(TRACE_MODULE_API, status, fmt, ##__VA_ARGS__)
|
|
|
|
VL53L0X_Error VL53L0X_reverse_bytes(uint8_t *data, uint32_t size)
|
|
{
|
|
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
|
|
uint8_t tempData;
|
|
uint32_t mirrorIndex;
|
|
uint32_t middle = size/2;
|
|
uint32_t index;
|
|
|
|
for (index = 0; index < middle; index++) {
|
|
mirrorIndex = size - index - 1;
|
|
tempData = data[index];
|
|
data[index] = data[mirrorIndex];
|
|
data[mirrorIndex] = tempData;
|
|
}
|
|
return Status;
|
|
}
|
|
|
|
VL53L0X_Error VL53L0X_measurement_poll_for_completion(VL53L0X_DEV Dev)
|
|
{
|
|
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
|
|
uint8_t NewDataReady = 0;
|
|
uint32_t LoopNb;
|
|
|
|
LOG_FUNCTION_START("");
|
|
|
|
LoopNb = 0;
|
|
|
|
do {
|
|
Status = VL53L0X_GetMeasurementDataReady(Dev, &NewDataReady);
|
|
if (Status != 0)
|
|
break; /* the error is set */
|
|
|
|
if (NewDataReady == 1)
|
|
break; /* done note that status == 0 */
|
|
|
|
LoopNb++;
|
|
if (LoopNb >= VL53L0X_DEFAULT_MAX_LOOP) {
|
|
Status = VL53L0X_ERROR_TIME_OUT;
|
|
break;
|
|
}
|
|
|
|
VL53L0X_PollingDelay(Dev);
|
|
} while (1);
|
|
|
|
LOG_FUNCTION_END(Status);
|
|
|
|
return Status;
|
|
}
|
|
|
|
|
|
uint8_t VL53L0X_decode_vcsel_period(uint8_t vcsel_period_reg)
|
|
{
|
|
/*!
|
|
* Converts the encoded VCSEL period register value into the real
|
|
* period in PLL clocks
|
|
*/
|
|
|
|
uint8_t vcsel_period_pclks = 0;
|
|
|
|
vcsel_period_pclks = (vcsel_period_reg + 1) << 1;
|
|
|
|
return vcsel_period_pclks;
|
|
}
|
|
|
|
uint8_t VL53L0X_encode_vcsel_period(uint8_t vcsel_period_pclks)
|
|
{
|
|
/*!
|
|
* Converts the encoded VCSEL period register value into the real period
|
|
* in PLL clocks
|
|
*/
|
|
|
|
uint8_t vcsel_period_reg = 0;
|
|
|
|
vcsel_period_reg = (vcsel_period_pclks >> 1) - 1;
|
|
|
|
return vcsel_period_reg;
|
|
}
|
|
|
|
|
|
uint32_t VL53L0X_isqrt(uint32_t num)
|
|
{
|
|
/*
|
|
* Implements an integer square root
|
|
*
|
|
* From: http://en.wikipedia.org/wiki/Methods_of_computing_square_roots
|
|
*/
|
|
|
|
uint32_t res = 0;
|
|
uint32_t bit = 1 << 30;
|
|
/* The second-to-top bit is set:
|
|
* 1 << 14 for 16-bits, 1 << 30 for 32 bits */
|
|
|
|
/* "bit" starts at the highest power of four <= the argument. */
|
|
while (bit > num)
|
|
bit >>= 2;
|
|
|
|
|
|
while (bit != 0) {
|
|
if (num >= res + bit) {
|
|
num -= res + bit;
|
|
res = (res >> 1) + bit;
|
|
} else
|
|
res >>= 1;
|
|
|
|
bit >>= 2;
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
|
|
uint32_t VL53L0X_quadrature_sum(uint32_t a, uint32_t b)
|
|
{
|
|
/*
|
|
* Implements a quadrature sum
|
|
*
|
|
* rea = sqrt(a^2 + b^2)
|
|
*
|
|
* Trap overflow case max input value is 65535 (16-bit value)
|
|
* as internal calc are 32-bit wide
|
|
*
|
|
* If overflow then seta output to maximum
|
|
*/
|
|
uint32_t res = 0;
|
|
|
|
if (a > 65535 || b > 65535)
|
|
res = 65535;
|
|
else
|
|
res = VL53L0X_isqrt(a * a + b * b);
|
|
|
|
return res;
|
|
}
|
|
|
|
|
|
VL53L0X_Error VL53L0X_device_read_strobe(VL53L0X_DEV Dev)
|
|
{
|
|
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
|
|
uint8_t strobe;
|
|
uint32_t LoopNb;
|
|
LOG_FUNCTION_START("");
|
|
|
|
Status |= VL53L0X_WrByte(Dev, 0x83, 0x00);
|
|
|
|
/* polling
|
|
* use timeout to avoid deadlock*/
|
|
if (Status == VL53L0X_ERROR_NONE) {
|
|
LoopNb = 0;
|
|
do {
|
|
Status = VL53L0X_RdByte(Dev, 0x83, &strobe);
|
|
if ((strobe != 0x00) || Status != VL53L0X_ERROR_NONE)
|
|
break;
|
|
|
|
LoopNb = LoopNb + 1;
|
|
} while (LoopNb < VL53L0X_DEFAULT_MAX_LOOP);
|
|
|
|
if (LoopNb >= VL53L0X_DEFAULT_MAX_LOOP)
|
|
Status = VL53L0X_ERROR_TIME_OUT;
|
|
|
|
}
|
|
|
|
Status |= VL53L0X_WrByte(Dev, 0x83, 0x01);
|
|
|
|
LOG_FUNCTION_END(Status);
|
|
return Status;
|
|
|
|
}
|
|
|
|
VL53L0X_Error VL53L0X_get_info_from_device(VL53L0X_DEV Dev, uint8_t option)
|
|
{
|
|
|
|
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
|
|
uint8_t byte;
|
|
uint32_t TmpDWord;
|
|
uint8_t ModuleId;
|
|
uint8_t Revision;
|
|
uint8_t ReferenceSpadCount = 0;
|
|
uint8_t ReferenceSpadType = 0;
|
|
uint32_t PartUIDUpper = 0;
|
|
uint32_t PartUIDLower = 0;
|
|
uint32_t OffsetFixed1104_mm = 0;
|
|
int16_t OffsetMicroMeters = 0;
|
|
uint32_t DistMeasTgtFixed1104_mm = 400 << 4;
|
|
uint32_t DistMeasFixed1104_400_mm = 0;
|
|
uint32_t SignalRateMeasFixed1104_400_mm = 0;
|
|
char ProductId[19];
|
|
char *ProductId_tmp;
|
|
uint8_t ReadDataFromDeviceDone;
|
|
FixPoint1616_t SignalRateMeasFixed400mmFix = 0;
|
|
uint8_t NvmRefGoodSpadMap[VL53L0X_REF_SPAD_BUFFER_SIZE];
|
|
int i;
|
|
|
|
|
|
LOG_FUNCTION_START("");
|
|
|
|
ReadDataFromDeviceDone = VL53L0X_GETDEVICESPECIFICPARAMETER(Dev,
|
|
ReadDataFromDeviceDone);
|
|
|
|
/* This access is done only once after that a GetDeviceInfo or
|
|
* datainit is done*/
|
|
if (ReadDataFromDeviceDone != 7) {
|
|
|
|
Status |= VL53L0X_WrByte(Dev, 0x80, 0x01);
|
|
Status |= VL53L0X_WrByte(Dev, 0xFF, 0x01);
|
|
Status |= VL53L0X_WrByte(Dev, 0x00, 0x00);
|
|
|
|
Status |= VL53L0X_WrByte(Dev, 0xFF, 0x06);
|
|
Status |= VL53L0X_RdByte(Dev, 0x83, &byte);
|
|
Status |= VL53L0X_WrByte(Dev, 0x83, byte|4);
|
|
Status |= VL53L0X_WrByte(Dev, 0xFF, 0x07);
|
|
Status |= VL53L0X_WrByte(Dev, 0x81, 0x01);
|
|
|
|
Status |= VL53L0X_PollingDelay(Dev);
|
|
|
|
Status |= VL53L0X_WrByte(Dev, 0x80, 0x01);
|
|
|
|
if (((option & 1) == 1) &&
|
|
((ReadDataFromDeviceDone & 1) == 0)) {
|
|
Status |= VL53L0X_WrByte(Dev, 0x94, 0x6b);
|
|
Status |= VL53L0X_device_read_strobe(Dev);
|
|
Status |= VL53L0X_RdDWord(Dev, 0x90, &TmpDWord);
|
|
|
|
ReferenceSpadCount = (uint8_t)((TmpDWord >> 8) & 0x07f);
|
|
ReferenceSpadType = (uint8_t)((TmpDWord >> 15) & 0x01);
|
|
|
|
Status |= VL53L0X_WrByte(Dev, 0x94, 0x24);
|
|
Status |= VL53L0X_device_read_strobe(Dev);
|
|
Status |= VL53L0X_RdDWord(Dev, 0x90, &TmpDWord);
|
|
|
|
|
|
NvmRefGoodSpadMap[0] = (uint8_t)((TmpDWord >> 24)
|
|
& 0xff);
|
|
NvmRefGoodSpadMap[1] = (uint8_t)((TmpDWord >> 16)
|
|
& 0xff);
|
|
NvmRefGoodSpadMap[2] = (uint8_t)((TmpDWord >> 8)
|
|
& 0xff);
|
|
NvmRefGoodSpadMap[3] = (uint8_t)(TmpDWord & 0xff);
|
|
|
|
Status |= VL53L0X_WrByte(Dev, 0x94, 0x25);
|
|
Status |= VL53L0X_device_read_strobe(Dev);
|
|
Status |= VL53L0X_RdDWord(Dev, 0x90, &TmpDWord);
|
|
|
|
NvmRefGoodSpadMap[4] = (uint8_t)((TmpDWord >> 24)
|
|
& 0xff);
|
|
NvmRefGoodSpadMap[5] = (uint8_t)((TmpDWord >> 16)
|
|
& 0xff);
|
|
}
|
|
|
|
if (((option & 2) == 2) &&
|
|
((ReadDataFromDeviceDone & 2) == 0)) {
|
|
|
|
Status |= VL53L0X_WrByte(Dev, 0x94, 0x02);
|
|
Status |= VL53L0X_device_read_strobe(Dev);
|
|
Status |= VL53L0X_RdByte(Dev, 0x90, &ModuleId);
|
|
|
|
Status |= VL53L0X_WrByte(Dev, 0x94, 0x7B);
|
|
Status |= VL53L0X_device_read_strobe(Dev);
|
|
Status |= VL53L0X_RdByte(Dev, 0x90, &Revision);
|
|
|
|
Status |= VL53L0X_WrByte(Dev, 0x94, 0x77);
|
|
Status |= VL53L0X_device_read_strobe(Dev);
|
|
Status |= VL53L0X_RdDWord(Dev, 0x90, &TmpDWord);
|
|
|
|
ProductId[0] = (char)((TmpDWord >> 25) & 0x07f);
|
|
ProductId[1] = (char)((TmpDWord >> 18) & 0x07f);
|
|
ProductId[2] = (char)((TmpDWord >> 11) & 0x07f);
|
|
ProductId[3] = (char)((TmpDWord >> 4) & 0x07f);
|
|
|
|
byte = (uint8_t)((TmpDWord & 0x00f) << 3);
|
|
|
|
Status |= VL53L0X_WrByte(Dev, 0x94, 0x78);
|
|
Status |= VL53L0X_device_read_strobe(Dev);
|
|
Status |= VL53L0X_RdDWord(Dev, 0x90, &TmpDWord);
|
|
|
|
ProductId[4] = (char)(byte +
|
|
((TmpDWord >> 29) & 0x07f));
|
|
ProductId[5] = (char)((TmpDWord >> 22) & 0x07f);
|
|
ProductId[6] = (char)((TmpDWord >> 15) & 0x07f);
|
|
ProductId[7] = (char)((TmpDWord >> 8) & 0x07f);
|
|
ProductId[8] = (char)((TmpDWord >> 1) & 0x07f);
|
|
|
|
byte = (uint8_t)((TmpDWord & 0x001) << 6);
|
|
|
|
Status |= VL53L0X_WrByte(Dev, 0x94, 0x79);
|
|
|
|
Status |= VL53L0X_device_read_strobe(Dev);
|
|
|
|
Status |= VL53L0X_RdDWord(Dev, 0x90, &TmpDWord);
|
|
|
|
ProductId[9] = (char)(byte +
|
|
((TmpDWord >> 26) & 0x07f));
|
|
ProductId[10] = (char)((TmpDWord >> 19) & 0x07f);
|
|
ProductId[11] = (char)((TmpDWord >> 12) & 0x07f);
|
|
ProductId[12] = (char)((TmpDWord >> 5) & 0x07f);
|
|
|
|
byte = (uint8_t)((TmpDWord & 0x01f) << 2);
|
|
|
|
Status |= VL53L0X_WrByte(Dev, 0x94, 0x7A);
|
|
|
|
Status |= VL53L0X_device_read_strobe(Dev);
|
|
|
|
Status |= VL53L0X_RdDWord(Dev, 0x90, &TmpDWord);
|
|
|
|
ProductId[13] = (char)(byte +
|
|
((TmpDWord >> 30) & 0x07f));
|
|
ProductId[14] = (char)((TmpDWord >> 23) & 0x07f);
|
|
ProductId[15] = (char)((TmpDWord >> 16) & 0x07f);
|
|
ProductId[16] = (char)((TmpDWord >> 9) & 0x07f);
|
|
ProductId[17] = (char)((TmpDWord >> 2) & 0x07f);
|
|
ProductId[18] = '\0';
|
|
|
|
}
|
|
|
|
if (((option & 4) == 4) &&
|
|
((ReadDataFromDeviceDone & 4) == 0)) {
|
|
|
|
Status |= VL53L0X_WrByte(Dev, 0x94, 0x7B);
|
|
Status |= VL53L0X_device_read_strobe(Dev);
|
|
Status |= VL53L0X_RdDWord(Dev, 0x90, &PartUIDUpper);
|
|
|
|
Status |= VL53L0X_WrByte(Dev, 0x94, 0x7C);
|
|
Status |= VL53L0X_device_read_strobe(Dev);
|
|
Status |= VL53L0X_RdDWord(Dev, 0x90, &PartUIDLower);
|
|
|
|
Status |= VL53L0X_WrByte(Dev, 0x94, 0x73);
|
|
Status |= VL53L0X_device_read_strobe(Dev);
|
|
Status |= VL53L0X_RdDWord(Dev, 0x90, &TmpDWord);
|
|
|
|
SignalRateMeasFixed1104_400_mm = (TmpDWord &
|
|
0x0000000ff) << 8;
|
|
|
|
Status |= VL53L0X_WrByte(Dev, 0x94, 0x74);
|
|
Status |= VL53L0X_device_read_strobe(Dev);
|
|
Status |= VL53L0X_RdDWord(Dev, 0x90, &TmpDWord);
|
|
|
|
SignalRateMeasFixed1104_400_mm |= ((TmpDWord &
|
|
0xff000000) >> 24);
|
|
|
|
Status |= VL53L0X_WrByte(Dev, 0x94, 0x75);
|
|
Status |= VL53L0X_device_read_strobe(Dev);
|
|
Status |= VL53L0X_RdDWord(Dev, 0x90, &TmpDWord);
|
|
|
|
DistMeasFixed1104_400_mm = (TmpDWord & 0x0000000ff)
|
|
<< 8;
|
|
|
|
Status |= VL53L0X_WrByte(Dev, 0x94, 0x76);
|
|
Status |= VL53L0X_device_read_strobe(Dev);
|
|
Status |= VL53L0X_RdDWord(Dev, 0x90, &TmpDWord);
|
|
|
|
DistMeasFixed1104_400_mm |= ((TmpDWord & 0xff000000)
|
|
>> 24);
|
|
}
|
|
|
|
Status |= VL53L0X_WrByte(Dev, 0x81, 0x00);
|
|
Status |= VL53L0X_WrByte(Dev, 0xFF, 0x06);
|
|
Status |= VL53L0X_RdByte(Dev, 0x83, &byte);
|
|
Status |= VL53L0X_WrByte(Dev, 0x83, byte&0xfb);
|
|
Status |= VL53L0X_WrByte(Dev, 0xFF, 0x01);
|
|
Status |= VL53L0X_WrByte(Dev, 0x00, 0x01);
|
|
|
|
Status |= VL53L0X_WrByte(Dev, 0xFF, 0x00);
|
|
Status |= VL53L0X_WrByte(Dev, 0x80, 0x00);
|
|
}
|
|
|
|
if ((Status == VL53L0X_ERROR_NONE) &&
|
|
(ReadDataFromDeviceDone != 7)) {
|
|
/* Assign to variable if status is ok */
|
|
if (((option & 1) == 1) &&
|
|
((ReadDataFromDeviceDone & 1) == 0)) {
|
|
VL53L0X_SETDEVICESPECIFICPARAMETER(Dev,
|
|
ReferenceSpadCount, ReferenceSpadCount);
|
|
|
|
VL53L0X_SETDEVICESPECIFICPARAMETER(Dev,
|
|
ReferenceSpadType, ReferenceSpadType);
|
|
|
|
for (i = 0; i < VL53L0X_REF_SPAD_BUFFER_SIZE; i++) {
|
|
Dev->Data.SpadData.RefGoodSpadMap[i] =
|
|
NvmRefGoodSpadMap[i];
|
|
}
|
|
}
|
|
|
|
if (((option & 2) == 2) &&
|
|
((ReadDataFromDeviceDone & 2) == 0)) {
|
|
VL53L0X_SETDEVICESPECIFICPARAMETER(Dev,
|
|
ModuleId, ModuleId);
|
|
|
|
VL53L0X_SETDEVICESPECIFICPARAMETER(Dev,
|
|
Revision, Revision);
|
|
|
|
ProductId_tmp = VL53L0X_GETDEVICESPECIFICPARAMETER(Dev,
|
|
ProductId);
|
|
VL53L0X_COPYSTRING(ProductId_tmp, ProductId);
|
|
|
|
}
|
|
|
|
if (((option & 4) == 4) &&
|
|
((ReadDataFromDeviceDone & 4) == 0)) {
|
|
VL53L0X_SETDEVICESPECIFICPARAMETER(Dev,
|
|
PartUIDUpper, PartUIDUpper);
|
|
|
|
VL53L0X_SETDEVICESPECIFICPARAMETER(Dev,
|
|
PartUIDLower, PartUIDLower);
|
|
|
|
SignalRateMeasFixed400mmFix =
|
|
VL53L0X_FIXPOINT97TOFIXPOINT1616(
|
|
SignalRateMeasFixed1104_400_mm);
|
|
|
|
VL53L0X_SETDEVICESPECIFICPARAMETER(Dev,
|
|
SignalRateMeasFixed400mm,
|
|
SignalRateMeasFixed400mmFix);
|
|
|
|
OffsetMicroMeters = 0;
|
|
if (DistMeasFixed1104_400_mm != 0) {
|
|
OffsetFixed1104_mm =
|
|
DistMeasFixed1104_400_mm -
|
|
DistMeasTgtFixed1104_mm;
|
|
OffsetMicroMeters = (OffsetFixed1104_mm
|
|
* 1000) >> 4;
|
|
OffsetMicroMeters *= -1;
|
|
}
|
|
|
|
PALDevDataSet(Dev,
|
|
Part2PartOffsetAdjustmentNVMMicroMeter,
|
|
OffsetMicroMeters);
|
|
}
|
|
byte = (uint8_t)(ReadDataFromDeviceDone|option);
|
|
VL53L0X_SETDEVICESPECIFICPARAMETER(Dev, ReadDataFromDeviceDone,
|
|
byte);
|
|
}
|
|
|
|
LOG_FUNCTION_END(Status);
|
|
return Status;
|
|
}
|
|
|
|
|
|
uint32_t VL53L0X_calc_macro_period_ps(VL53L0X_DEV Dev, uint8_t vcsel_period_pclks)
|
|
{
|
|
uint64_t PLL_period_ps;
|
|
uint32_t macro_period_vclks;
|
|
uint32_t macro_period_ps;
|
|
|
|
LOG_FUNCTION_START("");
|
|
|
|
/* The above calculation will produce rounding errors,
|
|
therefore set fixed value
|
|
*/
|
|
PLL_period_ps = 1655;
|
|
|
|
macro_period_vclks = 2304;
|
|
macro_period_ps = (uint32_t)(macro_period_vclks
|
|
* vcsel_period_pclks * PLL_period_ps);
|
|
|
|
LOG_FUNCTION_END("");
|
|
return macro_period_ps;
|
|
}
|
|
|
|
uint16_t VL53L0X_encode_timeout(uint32_t timeout_macro_clks)
|
|
{
|
|
/*!
|
|
* Encode timeout in macro periods in (LSByte * 2^MSByte) + 1 format
|
|
*/
|
|
|
|
uint16_t encoded_timeout = 0;
|
|
uint32_t ls_byte = 0;
|
|
uint16_t ms_byte = 0;
|
|
|
|
if (timeout_macro_clks > 0) {
|
|
ls_byte = timeout_macro_clks - 1;
|
|
|
|
while ((ls_byte & 0xFFFFFF00) > 0) {
|
|
ls_byte = ls_byte >> 1;
|
|
ms_byte++;
|
|
}
|
|
|
|
encoded_timeout = (ms_byte << 8)
|
|
+ (uint16_t) (ls_byte & 0x000000FF);
|
|
}
|
|
|
|
return encoded_timeout;
|
|
|
|
}
|
|
|
|
uint32_t VL53L0X_decode_timeout(uint16_t encoded_timeout)
|
|
{
|
|
/*!
|
|
* Decode 16-bit timeout register value - format (LSByte * 2^MSByte) + 1
|
|
*/
|
|
|
|
uint32_t timeout_macro_clks = 0;
|
|
|
|
timeout_macro_clks = ((uint32_t) (encoded_timeout & 0x00FF)
|
|
<< (uint32_t) ((encoded_timeout & 0xFF00) >> 8)) + 1;
|
|
|
|
return timeout_macro_clks;
|
|
}
|
|
|
|
|
|
/* To convert ms into register value */
|
|
uint32_t VL53L0X_calc_timeout_mclks(VL53L0X_DEV Dev,
|
|
uint32_t timeout_period_us,
|
|
uint8_t vcsel_period_pclks)
|
|
{
|
|
uint32_t macro_period_ps;
|
|
uint32_t macro_period_ns;
|
|
uint32_t timeout_period_mclks = 0;
|
|
|
|
macro_period_ps = VL53L0X_calc_macro_period_ps(Dev, vcsel_period_pclks);
|
|
macro_period_ns = (macro_period_ps + 500) / 1000;
|
|
|
|
timeout_period_mclks =
|
|
(uint32_t) (((timeout_period_us * 1000)
|
|
+ (macro_period_ns / 2)) / macro_period_ns);
|
|
|
|
return timeout_period_mclks;
|
|
}
|
|
|
|
/* To convert register value into us */
|
|
uint32_t VL53L0X_calc_timeout_us(VL53L0X_DEV Dev,
|
|
uint16_t timeout_period_mclks,
|
|
uint8_t vcsel_period_pclks)
|
|
{
|
|
uint32_t macro_period_ps;
|
|
uint32_t macro_period_ns;
|
|
uint32_t actual_timeout_period_us = 0;
|
|
|
|
macro_period_ps = VL53L0X_calc_macro_period_ps(Dev, vcsel_period_pclks);
|
|
macro_period_ns = (macro_period_ps + 500) / 1000;
|
|
|
|
actual_timeout_period_us =
|
|
((timeout_period_mclks * macro_period_ns) + 500) / 1000;
|
|
|
|
return actual_timeout_period_us;
|
|
}
|
|
|
|
|
|
VL53L0X_Error get_sequence_step_timeout(VL53L0X_DEV Dev,
|
|
VL53L0X_SequenceStepId SequenceStepId,
|
|
uint32_t *pTimeOutMicroSecs)
|
|
{
|
|
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
|
|
uint8_t CurrentVCSELPulsePeriodPClk;
|
|
uint8_t EncodedTimeOutByte = 0;
|
|
uint32_t TimeoutMicroSeconds = 0;
|
|
uint16_t PreRangeEncodedTimeOut = 0;
|
|
uint16_t MsrcTimeOutMClks;
|
|
uint16_t PreRangeTimeOutMClks;
|
|
uint16_t FinalRangeTimeOutMClks = 0;
|
|
uint16_t FinalRangeEncodedTimeOut;
|
|
VL53L0X_SchedulerSequenceSteps_t SchedulerSequenceSteps;
|
|
|
|
if ((SequenceStepId == VL53L0X_SEQUENCESTEP_TCC) ||
|
|
(SequenceStepId == VL53L0X_SEQUENCESTEP_DSS) ||
|
|
(SequenceStepId == VL53L0X_SEQUENCESTEP_MSRC)) {
|
|
|
|
Status = VL53L0X_GetVcselPulsePeriod(Dev,
|
|
VL53L0X_VCSEL_PERIOD_PRE_RANGE,
|
|
&CurrentVCSELPulsePeriodPClk);
|
|
if (Status == VL53L0X_ERROR_NONE) {
|
|
Status = VL53L0X_RdByte(Dev,
|
|
VL53L0X_REG_MSRC_CONFIG_TIMEOUT_MACROP,
|
|
&EncodedTimeOutByte);
|
|
}
|
|
MsrcTimeOutMClks = VL53L0X_decode_timeout(EncodedTimeOutByte);
|
|
|
|
TimeoutMicroSeconds = VL53L0X_calc_timeout_us(Dev,
|
|
MsrcTimeOutMClks,
|
|
CurrentVCSELPulsePeriodPClk);
|
|
} else if (SequenceStepId == VL53L0X_SEQUENCESTEP_PRE_RANGE) {
|
|
/* Retrieve PRE-RANGE VCSEL Period */
|
|
Status = VL53L0X_GetVcselPulsePeriod(Dev,
|
|
VL53L0X_VCSEL_PERIOD_PRE_RANGE,
|
|
&CurrentVCSELPulsePeriodPClk);
|
|
|
|
/* Retrieve PRE-RANGE Timeout in Macro periods (MCLKS) */
|
|
if (Status == VL53L0X_ERROR_NONE) {
|
|
|
|
/* Retrieve PRE-RANGE VCSEL Period */
|
|
Status = VL53L0X_GetVcselPulsePeriod(Dev,
|
|
VL53L0X_VCSEL_PERIOD_PRE_RANGE,
|
|
&CurrentVCSELPulsePeriodPClk);
|
|
|
|
if (Status == VL53L0X_ERROR_NONE) {
|
|
Status = VL53L0X_RdWord(Dev,
|
|
VL53L0X_REG_PRE_RANGE_CONFIG_TIMEOUT_MACROP_HI,
|
|
&PreRangeEncodedTimeOut);
|
|
}
|
|
|
|
PreRangeTimeOutMClks = VL53L0X_decode_timeout(
|
|
PreRangeEncodedTimeOut);
|
|
|
|
TimeoutMicroSeconds = VL53L0X_calc_timeout_us(Dev,
|
|
PreRangeTimeOutMClks,
|
|
CurrentVCSELPulsePeriodPClk);
|
|
}
|
|
} else if (SequenceStepId == VL53L0X_SEQUENCESTEP_FINAL_RANGE) {
|
|
|
|
VL53L0X_GetSequenceStepEnables(Dev, &SchedulerSequenceSteps);
|
|
PreRangeTimeOutMClks = 0;
|
|
|
|
if (SchedulerSequenceSteps.PreRangeOn) {
|
|
/* Retrieve PRE-RANGE VCSEL Period */
|
|
Status = VL53L0X_GetVcselPulsePeriod(Dev,
|
|
VL53L0X_VCSEL_PERIOD_PRE_RANGE,
|
|
&CurrentVCSELPulsePeriodPClk);
|
|
|
|
/* Retrieve PRE-RANGE Timeout in Macro periods
|
|
* (MCLKS) */
|
|
if (Status == VL53L0X_ERROR_NONE) {
|
|
Status = VL53L0X_RdWord(Dev,
|
|
VL53L0X_REG_PRE_RANGE_CONFIG_TIMEOUT_MACROP_HI,
|
|
&PreRangeEncodedTimeOut);
|
|
PreRangeTimeOutMClks = VL53L0X_decode_timeout(
|
|
PreRangeEncodedTimeOut);
|
|
}
|
|
}
|
|
|
|
if (Status == VL53L0X_ERROR_NONE) {
|
|
/* Retrieve FINAL-RANGE VCSEL Period */
|
|
Status = VL53L0X_GetVcselPulsePeriod(Dev,
|
|
VL53L0X_VCSEL_PERIOD_FINAL_RANGE,
|
|
&CurrentVCSELPulsePeriodPClk);
|
|
}
|
|
|
|
/* Retrieve FINAL-RANGE Timeout in Macro periods (MCLKS) */
|
|
if (Status == VL53L0X_ERROR_NONE) {
|
|
Status = VL53L0X_RdWord(Dev,
|
|
VL53L0X_REG_FINAL_RANGE_CONFIG_TIMEOUT_MACROP_HI,
|
|
&FinalRangeEncodedTimeOut);
|
|
FinalRangeTimeOutMClks = VL53L0X_decode_timeout(
|
|
FinalRangeEncodedTimeOut);
|
|
}
|
|
|
|
FinalRangeTimeOutMClks -= PreRangeTimeOutMClks;
|
|
TimeoutMicroSeconds = VL53L0X_calc_timeout_us(Dev,
|
|
FinalRangeTimeOutMClks,
|
|
CurrentVCSELPulsePeriodPClk);
|
|
}
|
|
|
|
*pTimeOutMicroSecs = TimeoutMicroSeconds;
|
|
|
|
return Status;
|
|
}
|
|
|
|
|
|
VL53L0X_Error set_sequence_step_timeout(VL53L0X_DEV Dev,
|
|
VL53L0X_SequenceStepId SequenceStepId,
|
|
uint32_t TimeOutMicroSecs)
|
|
{
|
|
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
|
|
uint8_t CurrentVCSELPulsePeriodPClk;
|
|
uint8_t MsrcEncodedTimeOut;
|
|
uint16_t PreRangeEncodedTimeOut;
|
|
uint16_t PreRangeTimeOutMClks;
|
|
uint16_t MsrcRangeTimeOutMClks;
|
|
uint32_t FinalRangeTimeOutMClks;
|
|
uint16_t FinalRangeEncodedTimeOut;
|
|
VL53L0X_SchedulerSequenceSteps_t SchedulerSequenceSteps;
|
|
|
|
if ((SequenceStepId == VL53L0X_SEQUENCESTEP_TCC) ||
|
|
(SequenceStepId == VL53L0X_SEQUENCESTEP_DSS) ||
|
|
(SequenceStepId == VL53L0X_SEQUENCESTEP_MSRC)) {
|
|
|
|
Status = VL53L0X_GetVcselPulsePeriod(Dev,
|
|
VL53L0X_VCSEL_PERIOD_PRE_RANGE,
|
|
&CurrentVCSELPulsePeriodPClk);
|
|
|
|
if (Status == VL53L0X_ERROR_NONE) {
|
|
MsrcRangeTimeOutMClks = VL53L0X_calc_timeout_mclks(Dev,
|
|
TimeOutMicroSecs,
|
|
(uint8_t)CurrentVCSELPulsePeriodPClk);
|
|
|
|
if (MsrcRangeTimeOutMClks > 256)
|
|
MsrcEncodedTimeOut = 255;
|
|
else
|
|
MsrcEncodedTimeOut =
|
|
(uint8_t)MsrcRangeTimeOutMClks - 1;
|
|
|
|
VL53L0X_SETDEVICESPECIFICPARAMETER(Dev,
|
|
LastEncodedTimeout,
|
|
MsrcEncodedTimeOut);
|
|
}
|
|
|
|
if (Status == VL53L0X_ERROR_NONE) {
|
|
Status = VL53L0X_WrByte(Dev,
|
|
VL53L0X_REG_MSRC_CONFIG_TIMEOUT_MACROP,
|
|
MsrcEncodedTimeOut);
|
|
}
|
|
} else {
|
|
|
|
if (SequenceStepId == VL53L0X_SEQUENCESTEP_PRE_RANGE) {
|
|
|
|
if (Status == VL53L0X_ERROR_NONE) {
|
|
Status = VL53L0X_GetVcselPulsePeriod(Dev,
|
|
VL53L0X_VCSEL_PERIOD_PRE_RANGE,
|
|
&CurrentVCSELPulsePeriodPClk);
|
|
PreRangeTimeOutMClks =
|
|
VL53L0X_calc_timeout_mclks(Dev,
|
|
TimeOutMicroSecs,
|
|
(uint8_t)CurrentVCSELPulsePeriodPClk);
|
|
PreRangeEncodedTimeOut = VL53L0X_encode_timeout(
|
|
PreRangeTimeOutMClks);
|
|
|
|
VL53L0X_SETDEVICESPECIFICPARAMETER(Dev,
|
|
LastEncodedTimeout,
|
|
PreRangeEncodedTimeOut);
|
|
}
|
|
|
|
if (Status == VL53L0X_ERROR_NONE) {
|
|
Status = VL53L0X_WrWord(Dev,
|
|
VL53L0X_REG_PRE_RANGE_CONFIG_TIMEOUT_MACROP_HI,
|
|
PreRangeEncodedTimeOut);
|
|
}
|
|
|
|
if (Status == VL53L0X_ERROR_NONE) {
|
|
VL53L0X_SETDEVICESPECIFICPARAMETER(
|
|
Dev,
|
|
PreRangeTimeoutMicroSecs,
|
|
TimeOutMicroSecs);
|
|
}
|
|
} else if (SequenceStepId == VL53L0X_SEQUENCESTEP_FINAL_RANGE) {
|
|
|
|
/* For the final range timeout, the pre-range timeout
|
|
* must be added. To do this both final and pre-range
|
|
* timeouts must be expressed in macro periods MClks
|
|
* because they have different vcsel periods.
|
|
*/
|
|
|
|
VL53L0X_GetSequenceStepEnables(Dev,
|
|
&SchedulerSequenceSteps);
|
|
PreRangeTimeOutMClks = 0;
|
|
if (SchedulerSequenceSteps.PreRangeOn) {
|
|
|
|
/* Retrieve PRE-RANGE VCSEL Period */
|
|
Status = VL53L0X_GetVcselPulsePeriod(Dev,
|
|
VL53L0X_VCSEL_PERIOD_PRE_RANGE,
|
|
&CurrentVCSELPulsePeriodPClk);
|
|
|
|
/* Retrieve PRE-RANGE Timeout in Macro periods
|
|
* (MCLKS) */
|
|
if (Status == VL53L0X_ERROR_NONE) {
|
|
Status = VL53L0X_RdWord(Dev, 0x51,
|
|
&PreRangeEncodedTimeOut);
|
|
PreRangeTimeOutMClks =
|
|
VL53L0X_decode_timeout(
|
|
PreRangeEncodedTimeOut);
|
|
}
|
|
}
|
|
|
|
/* Calculate FINAL RANGE Timeout in Macro Periods
|
|
* (MCLKS) and add PRE-RANGE value
|
|
*/
|
|
if (Status == VL53L0X_ERROR_NONE) {
|
|
|
|
Status = VL53L0X_GetVcselPulsePeriod(Dev,
|
|
VL53L0X_VCSEL_PERIOD_FINAL_RANGE,
|
|
&CurrentVCSELPulsePeriodPClk);
|
|
}
|
|
if (Status == VL53L0X_ERROR_NONE) {
|
|
|
|
FinalRangeTimeOutMClks =
|
|
VL53L0X_calc_timeout_mclks(Dev,
|
|
TimeOutMicroSecs,
|
|
(uint8_t) CurrentVCSELPulsePeriodPClk);
|
|
|
|
FinalRangeTimeOutMClks += PreRangeTimeOutMClks;
|
|
|
|
FinalRangeEncodedTimeOut =
|
|
VL53L0X_encode_timeout(FinalRangeTimeOutMClks);
|
|
|
|
if (Status == VL53L0X_ERROR_NONE) {
|
|
Status = VL53L0X_WrWord(Dev, 0x71,
|
|
FinalRangeEncodedTimeOut);
|
|
}
|
|
|
|
if (Status == VL53L0X_ERROR_NONE) {
|
|
VL53L0X_SETDEVICESPECIFICPARAMETER(
|
|
Dev,
|
|
FinalRangeTimeoutMicroSecs,
|
|
TimeOutMicroSecs);
|
|
}
|
|
}
|
|
} else
|
|
Status = VL53L0X_ERROR_INVALID_PARAMS;
|
|
|
|
}
|
|
return Status;
|
|
}
|
|
|
|
VL53L0X_Error VL53L0X_set_vcsel_pulse_period(VL53L0X_DEV Dev,
|
|
VL53L0X_VcselPeriod VcselPeriodType, uint8_t VCSELPulsePeriodPCLK)
|
|
{
|
|
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
|
|
uint8_t vcsel_period_reg;
|
|
uint8_t MinPreVcselPeriodPCLK = 12;
|
|
uint8_t MaxPreVcselPeriodPCLK = 18;
|
|
uint8_t MinFinalVcselPeriodPCLK = 8;
|
|
uint8_t MaxFinalVcselPeriodPCLK = 14;
|
|
uint32_t MeasurementTimingBudgetMicroSeconds;
|
|
uint32_t FinalRangeTimeoutMicroSeconds;
|
|
uint32_t PreRangeTimeoutMicroSeconds;
|
|
uint32_t MsrcTimeoutMicroSeconds;
|
|
uint8_t PhaseCalInt = 0;
|
|
|
|
/* Check if valid clock period requested */
|
|
|
|
if ((VCSELPulsePeriodPCLK % 2) != 0) {
|
|
/* Value must be an even number */
|
|
Status = VL53L0X_ERROR_INVALID_PARAMS;
|
|
} else if (VcselPeriodType == VL53L0X_VCSEL_PERIOD_PRE_RANGE &&
|
|
(VCSELPulsePeriodPCLK < MinPreVcselPeriodPCLK ||
|
|
VCSELPulsePeriodPCLK > MaxPreVcselPeriodPCLK)) {
|
|
Status = VL53L0X_ERROR_INVALID_PARAMS;
|
|
} else if (VcselPeriodType == VL53L0X_VCSEL_PERIOD_FINAL_RANGE &&
|
|
(VCSELPulsePeriodPCLK < MinFinalVcselPeriodPCLK ||
|
|
VCSELPulsePeriodPCLK > MaxFinalVcselPeriodPCLK)) {
|
|
|
|
Status = VL53L0X_ERROR_INVALID_PARAMS;
|
|
}
|
|
|
|
/* Apply specific settings for the requested clock period */
|
|
|
|
if (Status != VL53L0X_ERROR_NONE)
|
|
return Status;
|
|
|
|
|
|
if (VcselPeriodType == VL53L0X_VCSEL_PERIOD_PRE_RANGE) {
|
|
|
|
/* Set phase check limits */
|
|
if (VCSELPulsePeriodPCLK == 12) {
|
|
|
|
Status = VL53L0X_WrByte(Dev,
|
|
VL53L0X_REG_PRE_RANGE_CONFIG_VALID_PHASE_HIGH,
|
|
0x18);
|
|
Status = VL53L0X_WrByte(Dev,
|
|
VL53L0X_REG_PRE_RANGE_CONFIG_VALID_PHASE_LOW,
|
|
0x08);
|
|
} else if (VCSELPulsePeriodPCLK == 14) {
|
|
|
|
Status = VL53L0X_WrByte(Dev,
|
|
VL53L0X_REG_PRE_RANGE_CONFIG_VALID_PHASE_HIGH,
|
|
0x30);
|
|
Status = VL53L0X_WrByte(Dev,
|
|
VL53L0X_REG_PRE_RANGE_CONFIG_VALID_PHASE_LOW,
|
|
0x08);
|
|
} else if (VCSELPulsePeriodPCLK == 16) {
|
|
|
|
Status = VL53L0X_WrByte(Dev,
|
|
VL53L0X_REG_PRE_RANGE_CONFIG_VALID_PHASE_HIGH,
|
|
0x40);
|
|
Status = VL53L0X_WrByte(Dev,
|
|
VL53L0X_REG_PRE_RANGE_CONFIG_VALID_PHASE_LOW,
|
|
0x08);
|
|
} else if (VCSELPulsePeriodPCLK == 18) {
|
|
|
|
Status = VL53L0X_WrByte(Dev,
|
|
VL53L0X_REG_PRE_RANGE_CONFIG_VALID_PHASE_HIGH,
|
|
0x50);
|
|
Status = VL53L0X_WrByte(Dev,
|
|
VL53L0X_REG_PRE_RANGE_CONFIG_VALID_PHASE_LOW,
|
|
0x08);
|
|
}
|
|
} else if (VcselPeriodType == VL53L0X_VCSEL_PERIOD_FINAL_RANGE) {
|
|
|
|
if (VCSELPulsePeriodPCLK == 8) {
|
|
|
|
Status = VL53L0X_WrByte(Dev,
|
|
VL53L0X_REG_FINAL_RANGE_CONFIG_VALID_PHASE_HIGH,
|
|
0x10);
|
|
Status = VL53L0X_WrByte(Dev,
|
|
VL53L0X_REG_FINAL_RANGE_CONFIG_VALID_PHASE_LOW,
|
|
0x08);
|
|
|
|
Status |= VL53L0X_WrByte(Dev,
|
|
VL53L0X_REG_GLOBAL_CONFIG_VCSEL_WIDTH, 0x02);
|
|
Status |= VL53L0X_WrByte(Dev,
|
|
VL53L0X_REG_ALGO_PHASECAL_CONFIG_TIMEOUT, 0x0C);
|
|
|
|
Status |= VL53L0X_WrByte(Dev, 0xff, 0x01);
|
|
Status |= VL53L0X_WrByte(Dev,
|
|
VL53L0X_REG_ALGO_PHASECAL_LIM,
|
|
0x30);
|
|
Status |= VL53L0X_WrByte(Dev, 0xff, 0x00);
|
|
} else if (VCSELPulsePeriodPCLK == 10) {
|
|
|
|
Status = VL53L0X_WrByte(Dev,
|
|
VL53L0X_REG_FINAL_RANGE_CONFIG_VALID_PHASE_HIGH,
|
|
0x28);
|
|
Status = VL53L0X_WrByte(Dev,
|
|
VL53L0X_REG_FINAL_RANGE_CONFIG_VALID_PHASE_LOW,
|
|
0x08);
|
|
|
|
Status |= VL53L0X_WrByte(Dev,
|
|
VL53L0X_REG_GLOBAL_CONFIG_VCSEL_WIDTH, 0x03);
|
|
Status |= VL53L0X_WrByte(Dev,
|
|
VL53L0X_REG_ALGO_PHASECAL_CONFIG_TIMEOUT, 0x09);
|
|
|
|
Status |= VL53L0X_WrByte(Dev, 0xff, 0x01);
|
|
Status |= VL53L0X_WrByte(Dev,
|
|
VL53L0X_REG_ALGO_PHASECAL_LIM,
|
|
0x20);
|
|
Status |= VL53L0X_WrByte(Dev, 0xff, 0x00);
|
|
} else if (VCSELPulsePeriodPCLK == 12) {
|
|
|
|
Status = VL53L0X_WrByte(Dev,
|
|
VL53L0X_REG_FINAL_RANGE_CONFIG_VALID_PHASE_HIGH,
|
|
0x38);
|
|
Status = VL53L0X_WrByte(Dev,
|
|
VL53L0X_REG_FINAL_RANGE_CONFIG_VALID_PHASE_LOW,
|
|
0x08);
|
|
|
|
Status |= VL53L0X_WrByte(Dev,
|
|
VL53L0X_REG_GLOBAL_CONFIG_VCSEL_WIDTH, 0x03);
|
|
Status |= VL53L0X_WrByte(Dev,
|
|
VL53L0X_REG_ALGO_PHASECAL_CONFIG_TIMEOUT, 0x08);
|
|
|
|
Status |= VL53L0X_WrByte(Dev, 0xff, 0x01);
|
|
Status |= VL53L0X_WrByte(Dev,
|
|
VL53L0X_REG_ALGO_PHASECAL_LIM,
|
|
0x20);
|
|
Status |= VL53L0X_WrByte(Dev, 0xff, 0x00);
|
|
} else if (VCSELPulsePeriodPCLK == 14) {
|
|
|
|
Status = VL53L0X_WrByte(Dev,
|
|
VL53L0X_REG_FINAL_RANGE_CONFIG_VALID_PHASE_HIGH,
|
|
0x048);
|
|
Status = VL53L0X_WrByte(Dev,
|
|
VL53L0X_REG_FINAL_RANGE_CONFIG_VALID_PHASE_LOW,
|
|
0x08);
|
|
|
|
Status |= VL53L0X_WrByte(Dev,
|
|
VL53L0X_REG_GLOBAL_CONFIG_VCSEL_WIDTH, 0x03);
|
|
Status |= VL53L0X_WrByte(Dev,
|
|
VL53L0X_REG_ALGO_PHASECAL_CONFIG_TIMEOUT, 0x07);
|
|
|
|
Status |= VL53L0X_WrByte(Dev, 0xff, 0x01);
|
|
Status |= VL53L0X_WrByte(Dev,
|
|
VL53L0X_REG_ALGO_PHASECAL_LIM,
|
|
0x20);
|
|
Status |= VL53L0X_WrByte(Dev, 0xff, 0x00);
|
|
}
|
|
}
|
|
|
|
|
|
/* Re-calculate and apply timeouts, in macro periods */
|
|
|
|
if (Status == VL53L0X_ERROR_NONE) {
|
|
vcsel_period_reg = VL53L0X_encode_vcsel_period((uint8_t)
|
|
VCSELPulsePeriodPCLK);
|
|
|
|
/* When the VCSEL period for the pre or final range is changed,
|
|
* the corresponding timeout must be read from the device using
|
|
* the current VCSEL period, then the new VCSEL period can be
|
|
* applied. The timeout then must be written back to the device
|
|
* using the new VCSEL period.
|
|
*
|
|
* For the MSRC timeout, the same applies - this timeout being
|
|
* dependant on the pre-range vcsel period.
|
|
*/
|
|
switch (VcselPeriodType) {
|
|
case VL53L0X_VCSEL_PERIOD_PRE_RANGE:
|
|
Status = get_sequence_step_timeout(Dev,
|
|
VL53L0X_SEQUENCESTEP_PRE_RANGE,
|
|
&PreRangeTimeoutMicroSeconds);
|
|
|
|
if (Status == VL53L0X_ERROR_NONE)
|
|
Status = get_sequence_step_timeout(Dev,
|
|
VL53L0X_SEQUENCESTEP_MSRC,
|
|
&MsrcTimeoutMicroSeconds);
|
|
|
|
if (Status == VL53L0X_ERROR_NONE)
|
|
Status = VL53L0X_WrByte(Dev,
|
|
VL53L0X_REG_PRE_RANGE_CONFIG_VCSEL_PERIOD,
|
|
vcsel_period_reg);
|
|
|
|
|
|
if (Status == VL53L0X_ERROR_NONE)
|
|
Status = set_sequence_step_timeout(Dev,
|
|
VL53L0X_SEQUENCESTEP_PRE_RANGE,
|
|
PreRangeTimeoutMicroSeconds);
|
|
|
|
|
|
if (Status == VL53L0X_ERROR_NONE)
|
|
Status = set_sequence_step_timeout(Dev,
|
|
VL53L0X_SEQUENCESTEP_MSRC,
|
|
MsrcTimeoutMicroSeconds);
|
|
|
|
VL53L0X_SETDEVICESPECIFICPARAMETER(
|
|
Dev,
|
|
PreRangeVcselPulsePeriod,
|
|
VCSELPulsePeriodPCLK);
|
|
break;
|
|
case VL53L0X_VCSEL_PERIOD_FINAL_RANGE:
|
|
Status = get_sequence_step_timeout(Dev,
|
|
VL53L0X_SEQUENCESTEP_FINAL_RANGE,
|
|
&FinalRangeTimeoutMicroSeconds);
|
|
|
|
if (Status == VL53L0X_ERROR_NONE)
|
|
Status = VL53L0X_WrByte(Dev,
|
|
VL53L0X_REG_FINAL_RANGE_CONFIG_VCSEL_PERIOD,
|
|
vcsel_period_reg);
|
|
|
|
|
|
if (Status == VL53L0X_ERROR_NONE)
|
|
Status = set_sequence_step_timeout(Dev,
|
|
VL53L0X_SEQUENCESTEP_FINAL_RANGE,
|
|
FinalRangeTimeoutMicroSeconds);
|
|
|
|
VL53L0X_SETDEVICESPECIFICPARAMETER(
|
|
Dev,
|
|
FinalRangeVcselPulsePeriod,
|
|
VCSELPulsePeriodPCLK);
|
|
break;
|
|
default:
|
|
Status = VL53L0X_ERROR_INVALID_PARAMS;
|
|
}
|
|
}
|
|
|
|
/* Finally, the timing budget must be re-applied */
|
|
if (Status == VL53L0X_ERROR_NONE) {
|
|
VL53L0X_GETPARAMETERFIELD(Dev,
|
|
MeasurementTimingBudgetMicroSeconds,
|
|
MeasurementTimingBudgetMicroSeconds);
|
|
|
|
Status = VL53L0X_SetMeasurementTimingBudgetMicroSeconds(Dev,
|
|
MeasurementTimingBudgetMicroSeconds);
|
|
}
|
|
|
|
/* Perform the phase calibration. This is needed after changing on
|
|
* vcsel period.
|
|
* get_data_enable = 0, restore_config = 1 */
|
|
if (Status == VL53L0X_ERROR_NONE)
|
|
Status = VL53L0X_perform_phase_calibration(
|
|
Dev, &PhaseCalInt, 0, 1);
|
|
|
|
return Status;
|
|
}
|
|
|
|
VL53L0X_Error VL53L0X_get_vcsel_pulse_period(VL53L0X_DEV Dev,
|
|
VL53L0X_VcselPeriod VcselPeriodType, uint8_t *pVCSELPulsePeriodPCLK)
|
|
{
|
|
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
|
|
uint8_t vcsel_period_reg;
|
|
|
|
switch (VcselPeriodType) {
|
|
case VL53L0X_VCSEL_PERIOD_PRE_RANGE:
|
|
Status = VL53L0X_RdByte(Dev,
|
|
VL53L0X_REG_PRE_RANGE_CONFIG_VCSEL_PERIOD,
|
|
&vcsel_period_reg);
|
|
break;
|
|
case VL53L0X_VCSEL_PERIOD_FINAL_RANGE:
|
|
Status = VL53L0X_RdByte(Dev,
|
|
VL53L0X_REG_FINAL_RANGE_CONFIG_VCSEL_PERIOD,
|
|
&vcsel_period_reg);
|
|
break;
|
|
default:
|
|
Status = VL53L0X_ERROR_INVALID_PARAMS;
|
|
}
|
|
|
|
if (Status == VL53L0X_ERROR_NONE)
|
|
*pVCSELPulsePeriodPCLK =
|
|
VL53L0X_decode_vcsel_period(vcsel_period_reg);
|
|
|
|
return Status;
|
|
}
|
|
|
|
|
|
|
|
VL53L0X_Error VL53L0X_set_measurement_timing_budget_micro_seconds(VL53L0X_DEV Dev,
|
|
uint32_t MeasurementTimingBudgetMicroSeconds)
|
|
{
|
|
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
|
|
uint32_t FinalRangeTimingBudgetMicroSeconds;
|
|
VL53L0X_SchedulerSequenceSteps_t SchedulerSequenceSteps;
|
|
uint32_t MsrcDccTccTimeoutMicroSeconds = 2000;
|
|
uint32_t StartOverheadMicroSeconds = 1910;
|
|
uint32_t EndOverheadMicroSeconds = 960;
|
|
uint32_t MsrcOverheadMicroSeconds = 660;
|
|
uint32_t TccOverheadMicroSeconds = 590;
|
|
uint32_t DssOverheadMicroSeconds = 690;
|
|
uint32_t PreRangeOverheadMicroSeconds = 660;
|
|
uint32_t FinalRangeOverheadMicroSeconds = 550;
|
|
uint32_t PreRangeTimeoutMicroSeconds = 0;
|
|
uint32_t cMinTimingBudgetMicroSeconds = 20000;
|
|
uint32_t SubTimeout = 0;
|
|
|
|
LOG_FUNCTION_START("");
|
|
|
|
if (MeasurementTimingBudgetMicroSeconds
|
|
< cMinTimingBudgetMicroSeconds) {
|
|
Status = VL53L0X_ERROR_INVALID_PARAMS;
|
|
return Status;
|
|
}
|
|
|
|
FinalRangeTimingBudgetMicroSeconds =
|
|
MeasurementTimingBudgetMicroSeconds -
|
|
(StartOverheadMicroSeconds + EndOverheadMicroSeconds);
|
|
|
|
Status = VL53L0X_GetSequenceStepEnables(Dev, &SchedulerSequenceSteps);
|
|
|
|
if (Status == VL53L0X_ERROR_NONE &&
|
|
(SchedulerSequenceSteps.TccOn ||
|
|
SchedulerSequenceSteps.MsrcOn ||
|
|
SchedulerSequenceSteps.DssOn)) {
|
|
|
|
/* TCC, MSRC and DSS all share the same timeout */
|
|
Status = get_sequence_step_timeout(Dev,
|
|
VL53L0X_SEQUENCESTEP_MSRC,
|
|
&MsrcDccTccTimeoutMicroSeconds);
|
|
|
|
/* Subtract the TCC, MSRC and DSS timeouts if they are
|
|
* enabled. */
|
|
|
|
if (Status != VL53L0X_ERROR_NONE)
|
|
return Status;
|
|
|
|
/* TCC */
|
|
if (SchedulerSequenceSteps.TccOn) {
|
|
|
|
SubTimeout = MsrcDccTccTimeoutMicroSeconds
|
|
+ TccOverheadMicroSeconds;
|
|
|
|
if (SubTimeout <
|
|
FinalRangeTimingBudgetMicroSeconds) {
|
|
FinalRangeTimingBudgetMicroSeconds -=
|
|
SubTimeout;
|
|
} else {
|
|
/* Requested timeout too big. */
|
|
Status = VL53L0X_ERROR_INVALID_PARAMS;
|
|
}
|
|
}
|
|
|
|
if (Status != VL53L0X_ERROR_NONE) {
|
|
LOG_FUNCTION_END(Status);
|
|
return Status;
|
|
}
|
|
|
|
/* DSS */
|
|
if (SchedulerSequenceSteps.DssOn) {
|
|
|
|
SubTimeout = 2 * (MsrcDccTccTimeoutMicroSeconds +
|
|
DssOverheadMicroSeconds);
|
|
|
|
if (SubTimeout < FinalRangeTimingBudgetMicroSeconds) {
|
|
FinalRangeTimingBudgetMicroSeconds
|
|
-= SubTimeout;
|
|
} else {
|
|
/* Requested timeout too big. */
|
|
Status = VL53L0X_ERROR_INVALID_PARAMS;
|
|
}
|
|
} else if (SchedulerSequenceSteps.MsrcOn) {
|
|
/* MSRC */
|
|
SubTimeout = MsrcDccTccTimeoutMicroSeconds +
|
|
MsrcOverheadMicroSeconds;
|
|
|
|
if (SubTimeout < FinalRangeTimingBudgetMicroSeconds) {
|
|
FinalRangeTimingBudgetMicroSeconds
|
|
-= SubTimeout;
|
|
} else {
|
|
/* Requested timeout too big. */
|
|
Status = VL53L0X_ERROR_INVALID_PARAMS;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
if (Status != VL53L0X_ERROR_NONE) {
|
|
LOG_FUNCTION_END(Status);
|
|
return Status;
|
|
}
|
|
|
|
if (SchedulerSequenceSteps.PreRangeOn) {
|
|
|
|
/* Subtract the Pre-range timeout if enabled. */
|
|
|
|
Status = get_sequence_step_timeout(Dev,
|
|
VL53L0X_SEQUENCESTEP_PRE_RANGE,
|
|
&PreRangeTimeoutMicroSeconds);
|
|
|
|
SubTimeout = PreRangeTimeoutMicroSeconds +
|
|
PreRangeOverheadMicroSeconds;
|
|
|
|
if (SubTimeout < FinalRangeTimingBudgetMicroSeconds) {
|
|
FinalRangeTimingBudgetMicroSeconds -= SubTimeout;
|
|
} else {
|
|
/* Requested timeout too big. */
|
|
Status = VL53L0X_ERROR_INVALID_PARAMS;
|
|
}
|
|
}
|
|
|
|
|
|
if (Status == VL53L0X_ERROR_NONE &&
|
|
SchedulerSequenceSteps.FinalRangeOn) {
|
|
|
|
FinalRangeTimingBudgetMicroSeconds -=
|
|
FinalRangeOverheadMicroSeconds;
|
|
|
|
/* Final Range Timeout
|
|
* Note that the final range timeout is determined by the timing
|
|
* budget and the sum of all other timeouts within the sequence.
|
|
* If there is no room for the final range timeout, then an error
|
|
* will be set. Otherwise the remaining time will be applied to
|
|
* the final range.
|
|
*/
|
|
Status = set_sequence_step_timeout(Dev,
|
|
VL53L0X_SEQUENCESTEP_FINAL_RANGE,
|
|
FinalRangeTimingBudgetMicroSeconds);
|
|
|
|
VL53L0X_SETPARAMETERFIELD(Dev,
|
|
MeasurementTimingBudgetMicroSeconds,
|
|
MeasurementTimingBudgetMicroSeconds);
|
|
}
|
|
|
|
LOG_FUNCTION_END(Status);
|
|
|
|
return Status;
|
|
}
|
|
|
|
VL53L0X_Error VL53L0X_get_measurement_timing_budget_micro_seconds(VL53L0X_DEV Dev,
|
|
uint32_t *pMeasurementTimingBudgetMicroSeconds)
|
|
{
|
|
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
|
|
VL53L0X_SchedulerSequenceSteps_t SchedulerSequenceSteps;
|
|
uint32_t FinalRangeTimeoutMicroSeconds;
|
|
uint32_t MsrcDccTccTimeoutMicroSeconds = 2000;
|
|
uint32_t StartOverheadMicroSeconds = 1910;
|
|
uint32_t EndOverheadMicroSeconds = 960;
|
|
uint32_t MsrcOverheadMicroSeconds = 660;
|
|
uint32_t TccOverheadMicroSeconds = 590;
|
|
uint32_t DssOverheadMicroSeconds = 690;
|
|
uint32_t PreRangeOverheadMicroSeconds = 660;
|
|
uint32_t FinalRangeOverheadMicroSeconds = 550;
|
|
uint32_t PreRangeTimeoutMicroSeconds = 0;
|
|
|
|
LOG_FUNCTION_START("");
|
|
|
|
/* Start and end overhead times always present */
|
|
*pMeasurementTimingBudgetMicroSeconds
|
|
= StartOverheadMicroSeconds + EndOverheadMicroSeconds;
|
|
|
|
Status = VL53L0X_GetSequenceStepEnables(Dev, &SchedulerSequenceSteps);
|
|
|
|
if (Status != VL53L0X_ERROR_NONE) {
|
|
LOG_FUNCTION_END(Status);
|
|
return Status;
|
|
}
|
|
|
|
|
|
if (SchedulerSequenceSteps.TccOn ||
|
|
SchedulerSequenceSteps.MsrcOn ||
|
|
SchedulerSequenceSteps.DssOn) {
|
|
|
|
Status = get_sequence_step_timeout(Dev,
|
|
VL53L0X_SEQUENCESTEP_MSRC,
|
|
&MsrcDccTccTimeoutMicroSeconds);
|
|
|
|
if (Status == VL53L0X_ERROR_NONE) {
|
|
if (SchedulerSequenceSteps.TccOn) {
|
|
*pMeasurementTimingBudgetMicroSeconds +=
|
|
MsrcDccTccTimeoutMicroSeconds +
|
|
TccOverheadMicroSeconds;
|
|
}
|
|
|
|
if (SchedulerSequenceSteps.DssOn) {
|
|
*pMeasurementTimingBudgetMicroSeconds +=
|
|
2 * (MsrcDccTccTimeoutMicroSeconds +
|
|
DssOverheadMicroSeconds);
|
|
} else if (SchedulerSequenceSteps.MsrcOn) {
|
|
*pMeasurementTimingBudgetMicroSeconds +=
|
|
MsrcDccTccTimeoutMicroSeconds +
|
|
MsrcOverheadMicroSeconds;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (Status == VL53L0X_ERROR_NONE) {
|
|
if (SchedulerSequenceSteps.PreRangeOn) {
|
|
Status = get_sequence_step_timeout(Dev,
|
|
VL53L0X_SEQUENCESTEP_PRE_RANGE,
|
|
&PreRangeTimeoutMicroSeconds);
|
|
*pMeasurementTimingBudgetMicroSeconds +=
|
|
PreRangeTimeoutMicroSeconds +
|
|
PreRangeOverheadMicroSeconds;
|
|
}
|
|
}
|
|
|
|
if (Status == VL53L0X_ERROR_NONE) {
|
|
if (SchedulerSequenceSteps.FinalRangeOn) {
|
|
Status = get_sequence_step_timeout(Dev,
|
|
VL53L0X_SEQUENCESTEP_FINAL_RANGE,
|
|
&FinalRangeTimeoutMicroSeconds);
|
|
*pMeasurementTimingBudgetMicroSeconds +=
|
|
(FinalRangeTimeoutMicroSeconds +
|
|
FinalRangeOverheadMicroSeconds);
|
|
}
|
|
}
|
|
|
|
if (Status == VL53L0X_ERROR_NONE) {
|
|
VL53L0X_SETPARAMETERFIELD(Dev,
|
|
MeasurementTimingBudgetMicroSeconds,
|
|
*pMeasurementTimingBudgetMicroSeconds);
|
|
}
|
|
|
|
LOG_FUNCTION_END(Status);
|
|
return Status;
|
|
}
|
|
|
|
|
|
|
|
VL53L0X_Error VL53L0X_load_tuning_settings(VL53L0X_DEV Dev,
|
|
uint8_t *pTuningSettingBuffer)
|
|
{
|
|
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
|
|
int i;
|
|
int Index;
|
|
uint8_t msb;
|
|
uint8_t lsb;
|
|
uint8_t SelectParam;
|
|
uint8_t NumberOfWrites;
|
|
uint8_t Address;
|
|
uint8_t localBuffer[4]; /* max */
|
|
uint16_t Temp16;
|
|
|
|
LOG_FUNCTION_START("");
|
|
|
|
Index = 0;
|
|
|
|
while ((*(pTuningSettingBuffer + Index) != 0) &&
|
|
(Status == VL53L0X_ERROR_NONE)) {
|
|
NumberOfWrites = *(pTuningSettingBuffer + Index);
|
|
Index++;
|
|
if (NumberOfWrites == 0xFF) {
|
|
/* internal parameters */
|
|
SelectParam = *(pTuningSettingBuffer + Index);
|
|
Index++;
|
|
switch (SelectParam) {
|
|
case 0: /* uint16_t SigmaEstRefArray -> 2 bytes */
|
|
msb = *(pTuningSettingBuffer + Index);
|
|
Index++;
|
|
lsb = *(pTuningSettingBuffer + Index);
|
|
Index++;
|
|
Temp16 = VL53L0X_MAKEUINT16(lsb, msb);
|
|
PALDevDataSet(Dev, SigmaEstRefArray, Temp16);
|
|
break;
|
|
case 1: /* uint16_t SigmaEstEffPulseWidth -> 2 bytes */
|
|
msb = *(pTuningSettingBuffer + Index);
|
|
Index++;
|
|
lsb = *(pTuningSettingBuffer + Index);
|
|
Index++;
|
|
Temp16 = VL53L0X_MAKEUINT16(lsb, msb);
|
|
PALDevDataSet(Dev, SigmaEstEffPulseWidth,
|
|
Temp16);
|
|
break;
|
|
case 2: /* uint16_t SigmaEstEffAmbWidth -> 2 bytes */
|
|
msb = *(pTuningSettingBuffer + Index);
|
|
Index++;
|
|
lsb = *(pTuningSettingBuffer + Index);
|
|
Index++;
|
|
Temp16 = VL53L0X_MAKEUINT16(lsb, msb);
|
|
PALDevDataSet(Dev, SigmaEstEffAmbWidth, Temp16);
|
|
break;
|
|
case 3: /* uint16_t targetRefRate -> 2 bytes */
|
|
msb = *(pTuningSettingBuffer + Index);
|
|
Index++;
|
|
lsb = *(pTuningSettingBuffer + Index);
|
|
Index++;
|
|
Temp16 = VL53L0X_MAKEUINT16(lsb, msb);
|
|
PALDevDataSet(Dev, targetRefRate, Temp16);
|
|
break;
|
|
default: /* invalid parameter */
|
|
Status = VL53L0X_ERROR_INVALID_PARAMS;
|
|
}
|
|
|
|
} else if (NumberOfWrites <= 4) {
|
|
Address = *(pTuningSettingBuffer + Index);
|
|
Index++;
|
|
|
|
for (i = 0; i < NumberOfWrites; i++) {
|
|
localBuffer[i] = *(pTuningSettingBuffer +
|
|
Index);
|
|
Index++;
|
|
}
|
|
|
|
Status = VL53L0X_WriteMulti(Dev, Address, localBuffer,
|
|
NumberOfWrites);
|
|
|
|
} else {
|
|
Status = VL53L0X_ERROR_INVALID_PARAMS;
|
|
}
|
|
}
|
|
|
|
LOG_FUNCTION_END(Status);
|
|
return Status;
|
|
}
|
|
|
|
VL53L0X_Error VL53L0X_get_total_xtalk_rate(VL53L0X_DEV Dev,
|
|
VL53L0X_RangingMeasurementData_t *pRangingMeasurementData,
|
|
FixPoint1616_t *ptotal_xtalk_rate_mcps)
|
|
{
|
|
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
|
|
|
|
uint8_t xtalkCompEnable;
|
|
FixPoint1616_t totalXtalkMegaCps;
|
|
FixPoint1616_t xtalkPerSpadMegaCps;
|
|
|
|
*ptotal_xtalk_rate_mcps = 0;
|
|
|
|
Status = VL53L0X_GetXTalkCompensationEnable(Dev, &xtalkCompEnable);
|
|
if (Status == VL53L0X_ERROR_NONE) {
|
|
|
|
if (xtalkCompEnable) {
|
|
|
|
VL53L0X_GETPARAMETERFIELD(
|
|
Dev,
|
|
XTalkCompensationRateMegaCps,
|
|
xtalkPerSpadMegaCps);
|
|
|
|
/* FixPoint1616 * FixPoint 8:8 = FixPoint0824 */
|
|
totalXtalkMegaCps =
|
|
pRangingMeasurementData->EffectiveSpadRtnCount *
|
|
xtalkPerSpadMegaCps;
|
|
|
|
/* FixPoint0824 >> 8 = FixPoint1616 */
|
|
*ptotal_xtalk_rate_mcps =
|
|
(totalXtalkMegaCps + 0x80) >> 8;
|
|
}
|
|
}
|
|
|
|
return Status;
|
|
}
|
|
|
|
VL53L0X_Error VL53L0X_get_total_signal_rate(VL53L0X_DEV Dev,
|
|
VL53L0X_RangingMeasurementData_t *pRangingMeasurementData,
|
|
FixPoint1616_t *ptotal_signal_rate_mcps)
|
|
{
|
|
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
|
|
FixPoint1616_t totalXtalkMegaCps;
|
|
|
|
LOG_FUNCTION_START("");
|
|
|
|
*ptotal_signal_rate_mcps =
|
|
pRangingMeasurementData->SignalRateRtnMegaCps;
|
|
|
|
Status = VL53L0X_get_total_xtalk_rate(
|
|
Dev, pRangingMeasurementData, &totalXtalkMegaCps);
|
|
|
|
if (Status == VL53L0X_ERROR_NONE)
|
|
*ptotal_signal_rate_mcps += totalXtalkMegaCps;
|
|
|
|
return Status;
|
|
}
|
|
|
|
VL53L0X_Error VL53L0X_calc_dmax(
|
|
VL53L0X_DEV Dev,
|
|
FixPoint1616_t totalSignalRate_mcps,
|
|
FixPoint1616_t totalCorrSignalRate_mcps,
|
|
FixPoint1616_t pwMult,
|
|
uint32_t sigmaEstimateP1,
|
|
FixPoint1616_t sigmaEstimateP2,
|
|
uint32_t peakVcselDuration_us,
|
|
uint32_t *pdmax_mm)
|
|
{
|
|
const uint32_t cSigmaLimit = 18;
|
|
const FixPoint1616_t cSignalLimit = 0x4000; /* 0.25 */
|
|
const FixPoint1616_t cSigmaEstRef = 0x00000042; /* 0.001 */
|
|
const uint32_t cAmbEffWidthSigmaEst_ns = 6;
|
|
const uint32_t cAmbEffWidthDMax_ns = 7;
|
|
uint32_t dmaxCalRange_mm;
|
|
FixPoint1616_t dmaxCalSignalRateRtn_mcps;
|
|
FixPoint1616_t minSignalNeeded;
|
|
FixPoint1616_t minSignalNeeded_p1;
|
|
FixPoint1616_t minSignalNeeded_p2;
|
|
FixPoint1616_t minSignalNeeded_p3;
|
|
FixPoint1616_t minSignalNeeded_p4;
|
|
FixPoint1616_t sigmaLimitTmp;
|
|
FixPoint1616_t sigmaEstSqTmp;
|
|
FixPoint1616_t signalLimitTmp;
|
|
FixPoint1616_t SignalAt0mm;
|
|
FixPoint1616_t dmaxDark;
|
|
FixPoint1616_t dmaxAmbient;
|
|
FixPoint1616_t dmaxDarkTmp;
|
|
FixPoint1616_t sigmaEstP2Tmp;
|
|
uint32_t signalRateTemp_mcps;
|
|
|
|
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
|
|
|
|
LOG_FUNCTION_START("");
|
|
|
|
dmaxCalRange_mm =
|
|
PALDevDataGet(Dev, DmaxCalRangeMilliMeter);
|
|
|
|
dmaxCalSignalRateRtn_mcps =
|
|
PALDevDataGet(Dev, DmaxCalSignalRateRtnMegaCps);
|
|
|
|
/* uint32 * FixPoint1616 = FixPoint1616 */
|
|
SignalAt0mm = dmaxCalRange_mm * dmaxCalSignalRateRtn_mcps;
|
|
|
|
/* FixPoint1616 >> 8 = FixPoint2408 */
|
|
SignalAt0mm = (SignalAt0mm + 0x80) >> 8;
|
|
SignalAt0mm *= dmaxCalRange_mm;
|
|
|
|
minSignalNeeded_p1 = 0;
|
|
if (totalCorrSignalRate_mcps > 0) {
|
|
|
|
/* Shift by 10 bits to increase resolution prior to the
|
|
* division */
|
|
signalRateTemp_mcps = totalSignalRate_mcps << 10;
|
|
|
|
/* Add rounding value prior to division */
|
|
minSignalNeeded_p1 = signalRateTemp_mcps +
|
|
(totalCorrSignalRate_mcps/2);
|
|
|
|
/* FixPoint0626/FixPoint1616 = FixPoint2210 */
|
|
minSignalNeeded_p1 /= totalCorrSignalRate_mcps;
|
|
|
|
/* Apply a factored version of the speed of light.
|
|
Correction to be applied at the end */
|
|
minSignalNeeded_p1 *= 3;
|
|
|
|
/* FixPoint2210 * FixPoint2210 = FixPoint1220 */
|
|
minSignalNeeded_p1 *= minSignalNeeded_p1;
|
|
|
|
/* FixPoint1220 >> 16 = FixPoint2804 */
|
|
minSignalNeeded_p1 = (minSignalNeeded_p1 + 0x8000) >> 16;
|
|
}
|
|
|
|
minSignalNeeded_p2 = pwMult * sigmaEstimateP1;
|
|
|
|
/* FixPoint1616 >> 16 = uint32 */
|
|
minSignalNeeded_p2 = (minSignalNeeded_p2 + 0x8000) >> 16;
|
|
|
|
/* uint32 * uint32 = uint32 */
|
|
minSignalNeeded_p2 *= minSignalNeeded_p2;
|
|
|
|
/* Check sigmaEstimateP2
|
|
* If this value is too high there is not enough signal rate
|
|
* to calculate dmax value so set a suitable value to ensure
|
|
* a very small dmax.
|
|
*/
|
|
sigmaEstP2Tmp = (sigmaEstimateP2 + 0x8000) >> 16;
|
|
sigmaEstP2Tmp = (sigmaEstP2Tmp + cAmbEffWidthSigmaEst_ns/2)/
|
|
cAmbEffWidthSigmaEst_ns;
|
|
sigmaEstP2Tmp *= cAmbEffWidthDMax_ns;
|
|
|
|
if (sigmaEstP2Tmp > 0xffff) {
|
|
minSignalNeeded_p3 = 0xfff00000;
|
|
} else {
|
|
|
|
/* DMAX uses a different ambient width from sigma, so apply
|
|
* correction.
|
|
* Perform division before multiplication to prevent overflow.
|
|
*/
|
|
sigmaEstimateP2 = (sigmaEstimateP2 + cAmbEffWidthSigmaEst_ns/2)/
|
|
cAmbEffWidthSigmaEst_ns;
|
|
sigmaEstimateP2 *= cAmbEffWidthDMax_ns;
|
|
|
|
/* FixPoint1616 >> 16 = uint32 */
|
|
minSignalNeeded_p3 = (sigmaEstimateP2 + 0x8000) >> 16;
|
|
|
|
minSignalNeeded_p3 *= minSignalNeeded_p3;
|
|
|
|
}
|
|
|
|
/* FixPoint1814 / uint32 = FixPoint1814 */
|
|
sigmaLimitTmp = ((cSigmaLimit << 14) + 500) / 1000;
|
|
|
|
/* FixPoint1814 * FixPoint1814 = FixPoint3628 := FixPoint0428 */
|
|
sigmaLimitTmp *= sigmaLimitTmp;
|
|
|
|
/* FixPoint1616 * FixPoint1616 = FixPoint3232 */
|
|
sigmaEstSqTmp = cSigmaEstRef * cSigmaEstRef;
|
|
|
|
/* FixPoint3232 >> 4 = FixPoint0428 */
|
|
sigmaEstSqTmp = (sigmaEstSqTmp + 0x08) >> 4;
|
|
|
|
/* FixPoint0428 - FixPoint0428 = FixPoint0428 */
|
|
sigmaLimitTmp -= sigmaEstSqTmp;
|
|
|
|
/* uint32_t * FixPoint0428 = FixPoint0428 */
|
|
minSignalNeeded_p4 = 4 * 12 * sigmaLimitTmp;
|
|
|
|
/* FixPoint0428 >> 14 = FixPoint1814 */
|
|
minSignalNeeded_p4 = (minSignalNeeded_p4 + 0x2000) >> 14;
|
|
|
|
/* uint32 + uint32 = uint32 */
|
|
minSignalNeeded = (minSignalNeeded_p2 + minSignalNeeded_p3);
|
|
|
|
/* uint32 / uint32 = uint32 */
|
|
minSignalNeeded += (peakVcselDuration_us/2);
|
|
minSignalNeeded /= peakVcselDuration_us;
|
|
|
|
/* uint32 << 14 = FixPoint1814 */
|
|
minSignalNeeded <<= 14;
|
|
|
|
/* FixPoint1814 / FixPoint1814 = uint32 */
|
|
minSignalNeeded += (minSignalNeeded_p4/2);
|
|
minSignalNeeded /= minSignalNeeded_p4;
|
|
|
|
/* FixPoint3200 * FixPoint2804 := FixPoint2804*/
|
|
minSignalNeeded *= minSignalNeeded_p1;
|
|
|
|
/* Apply correction by dividing by 1000000.
|
|
* This assumes 10E16 on the numerator of the equation
|
|
* and 10E-22 on the denominator.
|
|
* We do this because 32bit fix point calculation can't
|
|
* handle the larger and smaller elements of this equation,
|
|
* i.e. speed of light and pulse widths.
|
|
*/
|
|
minSignalNeeded = (minSignalNeeded + 500) / 1000;
|
|
minSignalNeeded <<= 4;
|
|
|
|
minSignalNeeded = (minSignalNeeded + 500) / 1000;
|
|
|
|
/* FixPoint1616 >> 8 = FixPoint2408 */
|
|
signalLimitTmp = (cSignalLimit + 0x80) >> 8;
|
|
|
|
/* FixPoint2408/FixPoint2408 = uint32 */
|
|
if (signalLimitTmp != 0)
|
|
dmaxDarkTmp = (SignalAt0mm + (signalLimitTmp / 2))
|
|
/ signalLimitTmp;
|
|
else
|
|
dmaxDarkTmp = 0;
|
|
|
|
dmaxDark = VL53L0X_isqrt(dmaxDarkTmp);
|
|
|
|
/* FixPoint2408/FixPoint2408 = uint32 */
|
|
if (minSignalNeeded != 0)
|
|
dmaxAmbient = (SignalAt0mm + minSignalNeeded/2)
|
|
/ minSignalNeeded;
|
|
else
|
|
dmaxAmbient = 0;
|
|
|
|
dmaxAmbient = VL53L0X_isqrt(dmaxAmbient);
|
|
|
|
*pdmax_mm = dmaxDark;
|
|
if (dmaxDark > dmaxAmbient)
|
|
*pdmax_mm = dmaxAmbient;
|
|
|
|
LOG_FUNCTION_END(Status);
|
|
|
|
return Status;
|
|
}
|
|
|
|
|
|
VL53L0X_Error VL53L0X_calc_sigma_estimate(VL53L0X_DEV Dev,
|
|
VL53L0X_RangingMeasurementData_t *pRangingMeasurementData,
|
|
FixPoint1616_t *pSigmaEstimate,
|
|
uint32_t *pDmax_mm)
|
|
{
|
|
/* Expressed in 100ths of a ns, i.e. centi-ns */
|
|
const uint32_t cPulseEffectiveWidth_centi_ns = 800;
|
|
/* Expressed in 100ths of a ns, i.e. centi-ns */
|
|
const uint32_t cAmbientEffectiveWidth_centi_ns = 600;
|
|
const FixPoint1616_t cDfltFinalRangeIntegrationTimeMilliSecs = 0x00190000; /* 25ms */
|
|
const uint32_t cVcselPulseWidth_ps = 4700; /* pico secs */
|
|
const FixPoint1616_t cSigmaEstMax = 0x028F87AE;
|
|
const FixPoint1616_t cSigmaEstRtnMax = 0xF000;
|
|
const FixPoint1616_t cAmbToSignalRatioMax = 0xF0000000/
|
|
cAmbientEffectiveWidth_centi_ns;
|
|
/* Time Of Flight per mm (6.6 pico secs) */
|
|
const FixPoint1616_t cTOF_per_mm_ps = 0x0006999A;
|
|
const uint32_t c16BitRoundingParam = 0x00008000;
|
|
const FixPoint1616_t cMaxXTalk_kcps = 0x00320000;
|
|
const uint32_t cPllPeriod_ps = 1655;
|
|
|
|
uint32_t vcselTotalEventsRtn;
|
|
uint32_t finalRangeTimeoutMicroSecs;
|
|
uint32_t preRangeTimeoutMicroSecs;
|
|
uint32_t finalRangeIntegrationTimeMilliSecs;
|
|
FixPoint1616_t sigmaEstimateP1;
|
|
FixPoint1616_t sigmaEstimateP2;
|
|
FixPoint1616_t sigmaEstimateP3;
|
|
FixPoint1616_t deltaT_ps;
|
|
FixPoint1616_t pwMult;
|
|
FixPoint1616_t sigmaEstRtn;
|
|
FixPoint1616_t sigmaEstimate;
|
|
FixPoint1616_t xTalkCorrection;
|
|
FixPoint1616_t ambientRate_kcps;
|
|
FixPoint1616_t peakSignalRate_kcps;
|
|
FixPoint1616_t xTalkCompRate_mcps;
|
|
uint32_t xTalkCompRate_kcps;
|
|
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
|
|
FixPoint1616_t diff1_mcps;
|
|
FixPoint1616_t diff2_mcps;
|
|
FixPoint1616_t sqr1;
|
|
FixPoint1616_t sqr2;
|
|
FixPoint1616_t sqrSum;
|
|
FixPoint1616_t sqrtResult_centi_ns;
|
|
FixPoint1616_t sqrtResult;
|
|
FixPoint1616_t totalSignalRate_mcps;
|
|
FixPoint1616_t correctedSignalRate_mcps;
|
|
FixPoint1616_t sigmaEstRef;
|
|
uint32_t vcselWidth;
|
|
uint32_t finalRangeMacroPCLKS;
|
|
uint32_t preRangeMacroPCLKS;
|
|
uint32_t peakVcselDuration_us;
|
|
uint8_t finalRangeVcselPCLKS;
|
|
uint8_t preRangeVcselPCLKS;
|
|
/*! \addtogroup calc_sigma_estimate
|
|
* @{
|
|
*
|
|
* Estimates the range sigma
|
|
*/
|
|
|
|
LOG_FUNCTION_START("");
|
|
|
|
VL53L0X_GETPARAMETERFIELD(Dev, XTalkCompensationRateMegaCps,
|
|
xTalkCompRate_mcps);
|
|
|
|
/*
|
|
* We work in kcps rather than mcps as this helps keep within the
|
|
* confines of the 32 Fix1616 type.
|
|
*/
|
|
|
|
ambientRate_kcps =
|
|
(pRangingMeasurementData->AmbientRateRtnMegaCps * 1000) >> 16;
|
|
|
|
correctedSignalRate_mcps =
|
|
pRangingMeasurementData->SignalRateRtnMegaCps;
|
|
|
|
|
|
Status = VL53L0X_get_total_signal_rate(
|
|
Dev, pRangingMeasurementData, &totalSignalRate_mcps);
|
|
Status = VL53L0X_get_total_xtalk_rate(
|
|
Dev, pRangingMeasurementData, &xTalkCompRate_mcps);
|
|
|
|
|
|
/* Signal rate measurement provided by device is the
|
|
* peak signal rate, not average.
|
|
*/
|
|
peakSignalRate_kcps = (totalSignalRate_mcps * 1000);
|
|
peakSignalRate_kcps = (peakSignalRate_kcps + 0x8000) >> 16;
|
|
|
|
xTalkCompRate_kcps = xTalkCompRate_mcps * 1000;
|
|
|
|
if (xTalkCompRate_kcps > cMaxXTalk_kcps)
|
|
xTalkCompRate_kcps = cMaxXTalk_kcps;
|
|
|
|
if (Status == VL53L0X_ERROR_NONE) {
|
|
|
|
/* Calculate final range macro periods */
|
|
finalRangeTimeoutMicroSecs = VL53L0X_GETDEVICESPECIFICPARAMETER(
|
|
Dev, FinalRangeTimeoutMicroSecs);
|
|
|
|
finalRangeVcselPCLKS = VL53L0X_GETDEVICESPECIFICPARAMETER(
|
|
Dev, FinalRangeVcselPulsePeriod);
|
|
|
|
finalRangeMacroPCLKS = VL53L0X_calc_timeout_mclks(
|
|
Dev, finalRangeTimeoutMicroSecs, finalRangeVcselPCLKS);
|
|
|
|
/* Calculate pre-range macro periods */
|
|
preRangeTimeoutMicroSecs = VL53L0X_GETDEVICESPECIFICPARAMETER(
|
|
Dev, PreRangeTimeoutMicroSecs);
|
|
|
|
preRangeVcselPCLKS = VL53L0X_GETDEVICESPECIFICPARAMETER(
|
|
Dev, PreRangeVcselPulsePeriod);
|
|
|
|
preRangeMacroPCLKS = VL53L0X_calc_timeout_mclks(
|
|
Dev, preRangeTimeoutMicroSecs, preRangeVcselPCLKS);
|
|
|
|
vcselWidth = 3;
|
|
if (finalRangeVcselPCLKS == 8)
|
|
vcselWidth = 2;
|
|
|
|
|
|
peakVcselDuration_us = vcselWidth * 2048 *
|
|
(preRangeMacroPCLKS + finalRangeMacroPCLKS);
|
|
peakVcselDuration_us = (peakVcselDuration_us + 500)/1000;
|
|
peakVcselDuration_us *= cPllPeriod_ps;
|
|
peakVcselDuration_us = (peakVcselDuration_us + 500)/1000;
|
|
|
|
/* Fix1616 >> 8 = Fix2408 */
|
|
totalSignalRate_mcps = (totalSignalRate_mcps + 0x80) >> 8;
|
|
|
|
/* Fix2408 * uint32 = Fix2408 */
|
|
vcselTotalEventsRtn = totalSignalRate_mcps *
|
|
peakVcselDuration_us;
|
|
|
|
/* Fix2408 >> 8 = uint32 */
|
|
vcselTotalEventsRtn = (vcselTotalEventsRtn + 0x80) >> 8;
|
|
|
|
/* Fix2408 << 8 = Fix1616 = */
|
|
totalSignalRate_mcps <<= 8;
|
|
}
|
|
|
|
if (Status != VL53L0X_ERROR_NONE) {
|
|
LOG_FUNCTION_END(Status);
|
|
return Status;
|
|
}
|
|
|
|
if (peakSignalRate_kcps == 0) {
|
|
*pSigmaEstimate = cSigmaEstMax;
|
|
PALDevDataSet(Dev, SigmaEstimate, cSigmaEstMax);
|
|
*pDmax_mm = 0;
|
|
} else {
|
|
if (vcselTotalEventsRtn < 1)
|
|
vcselTotalEventsRtn = 1;
|
|
|
|
sigmaEstimateP1 = cPulseEffectiveWidth_centi_ns;
|
|
|
|
/* ((FixPoint1616 << 16)* uint32)/uint32 = FixPoint1616 */
|
|
sigmaEstimateP2 = (ambientRate_kcps << 16)/peakSignalRate_kcps;
|
|
if (sigmaEstimateP2 > cAmbToSignalRatioMax) {
|
|
/* Clip to prevent overflow. Will ensure safe
|
|
* max result. */
|
|
sigmaEstimateP2 = cAmbToSignalRatioMax;
|
|
}
|
|
sigmaEstimateP2 *= cAmbientEffectiveWidth_centi_ns;
|
|
|
|
sigmaEstimateP3 = 2 * VL53L0X_isqrt(vcselTotalEventsRtn * 12);
|
|
|
|
/* uint32 * FixPoint1616 = FixPoint1616 */
|
|
deltaT_ps = pRangingMeasurementData->RangeMilliMeter *
|
|
cTOF_per_mm_ps;
|
|
|
|
/*
|
|
* vcselRate - xtalkCompRate
|
|
* (uint32 << 16) - FixPoint1616 = FixPoint1616.
|
|
* Divide result by 1000 to convert to mcps.
|
|
* 500 is added to ensure rounding when integer division
|
|
* truncates.
|
|
*/
|
|
diff1_mcps = (((peakSignalRate_kcps << 16) -
|
|
2 * xTalkCompRate_kcps) + 500)/1000;
|
|
|
|
/* vcselRate + xtalkCompRate */
|
|
diff2_mcps = ((peakSignalRate_kcps << 16) + 500)/1000;
|
|
|
|
/* Shift by 8 bits to increase resolution prior to the
|
|
* division */
|
|
diff1_mcps <<= 8;
|
|
|
|
/* FixPoint0824/FixPoint1616 = FixPoint2408 */
|
|
xTalkCorrection = abs(diff1_mcps/diff2_mcps);
|
|
|
|
/* FixPoint2408 << 8 = FixPoint1616 */
|
|
xTalkCorrection <<= 8;
|
|
|
|
if(pRangingMeasurementData->RangeStatus != 0){
|
|
pwMult = 1 << 16;
|
|
} else {
|
|
/* FixPoint1616/uint32 = FixPoint1616 */
|
|
pwMult = deltaT_ps/cVcselPulseWidth_ps; /* smaller than 1.0f */
|
|
|
|
/*
|
|
* FixPoint1616 * FixPoint1616 = FixPoint3232, however both
|
|
* values are small enough such that32 bits will not be
|
|
* exceeded.
|
|
*/
|
|
pwMult *= ((1 << 16) - xTalkCorrection);
|
|
|
|
/* (FixPoint3232 >> 16) = FixPoint1616 */
|
|
pwMult = (pwMult + c16BitRoundingParam) >> 16;
|
|
|
|
/* FixPoint1616 + FixPoint1616 = FixPoint1616 */
|
|
pwMult += (1 << 16);
|
|
|
|
/*
|
|
* At this point the value will be 1.xx, therefore if we square
|
|
* the value this will exceed 32 bits. To address this perform
|
|
* a single shift to the right before the multiplication.
|
|
*/
|
|
pwMult >>= 1;
|
|
/* FixPoint1715 * FixPoint1715 = FixPoint3430 */
|
|
pwMult = pwMult * pwMult;
|
|
|
|
/* (FixPoint3430 >> 14) = Fix1616 */
|
|
pwMult >>= 14;
|
|
}
|
|
|
|
/* FixPoint1616 * uint32 = FixPoint1616 */
|
|
sqr1 = pwMult * sigmaEstimateP1;
|
|
|
|
/* (FixPoint1616 >> 16) = FixPoint3200 */
|
|
sqr1 = (sqr1 + 0x8000) >> 16;
|
|
|
|
/* FixPoint3200 * FixPoint3200 = FixPoint6400 */
|
|
sqr1 *= sqr1;
|
|
|
|
sqr2 = sigmaEstimateP2;
|
|
|
|
/* (FixPoint1616 >> 16) = FixPoint3200 */
|
|
sqr2 = (sqr2 + 0x8000) >> 16;
|
|
|
|
/* FixPoint3200 * FixPoint3200 = FixPoint6400 */
|
|
sqr2 *= sqr2;
|
|
|
|
/* FixPoint64000 + FixPoint6400 = FixPoint6400 */
|
|
sqrSum = sqr1 + sqr2;
|
|
|
|
/* SQRT(FixPoin6400) = FixPoint3200 */
|
|
sqrtResult_centi_ns = VL53L0X_isqrt(sqrSum);
|
|
|
|
/* (FixPoint3200 << 16) = FixPoint1616 */
|
|
sqrtResult_centi_ns <<= 16;
|
|
|
|
/*
|
|
* Note that the Speed Of Light is expressed in um per 1E-10
|
|
* seconds (2997) Therefore to get mm/ns we have to divide by
|
|
* 10000
|
|
*/
|
|
sigmaEstRtn = (((sqrtResult_centi_ns+50)/100) /
|
|
sigmaEstimateP3);
|
|
sigmaEstRtn *= VL53L0X_SPEED_OF_LIGHT_IN_AIR;
|
|
|
|
/* Add 5000 before dividing by 10000 to ensure rounding. */
|
|
sigmaEstRtn += 5000;
|
|
sigmaEstRtn /= 10000;
|
|
|
|
if (sigmaEstRtn > cSigmaEstRtnMax) {
|
|
/* Clip to prevent overflow. Will ensure safe
|
|
* max result. */
|
|
sigmaEstRtn = cSigmaEstRtnMax;
|
|
}
|
|
finalRangeIntegrationTimeMilliSecs =
|
|
(finalRangeTimeoutMicroSecs + preRangeTimeoutMicroSecs + 500)/1000;
|
|
|
|
/* sigmaEstRef = 1mm * 25ms/final range integration time (inc pre-range)
|
|
* sqrt(FixPoint1616/int) = FixPoint2408)
|
|
*/
|
|
sigmaEstRef =
|
|
VL53L0X_isqrt((cDfltFinalRangeIntegrationTimeMilliSecs +
|
|
finalRangeIntegrationTimeMilliSecs/2)/
|
|
finalRangeIntegrationTimeMilliSecs);
|
|
|
|
/* FixPoint2408 << 8 = FixPoint1616 */
|
|
sigmaEstRef <<= 8;
|
|
sigmaEstRef = (sigmaEstRef + 500)/1000;
|
|
|
|
/* FixPoint1616 * FixPoint1616 = FixPoint3232 */
|
|
sqr1 = sigmaEstRtn * sigmaEstRtn;
|
|
/* FixPoint1616 * FixPoint1616 = FixPoint3232 */
|
|
sqr2 = sigmaEstRef * sigmaEstRef;
|
|
|
|
/* sqrt(FixPoint3232) = FixPoint1616 */
|
|
sqrtResult = VL53L0X_isqrt((sqr1 + sqr2));
|
|
/*
|
|
* Note that the Shift by 4 bits increases resolution prior to
|
|
* the sqrt, therefore the result must be shifted by 2 bits to
|
|
* the right to revert back to the FixPoint1616 format.
|
|
*/
|
|
|
|
sigmaEstimate = 1000 * sqrtResult;
|
|
|
|
if ((peakSignalRate_kcps < 1) || (vcselTotalEventsRtn < 1) ||
|
|
(sigmaEstimate > cSigmaEstMax)) {
|
|
sigmaEstimate = cSigmaEstMax;
|
|
}
|
|
|
|
*pSigmaEstimate = (uint32_t)(sigmaEstimate);
|
|
PALDevDataSet(Dev, SigmaEstimate, *pSigmaEstimate);
|
|
Status = VL53L0X_calc_dmax(
|
|
Dev,
|
|
totalSignalRate_mcps,
|
|
correctedSignalRate_mcps,
|
|
pwMult,
|
|
sigmaEstimateP1,
|
|
sigmaEstimateP2,
|
|
peakVcselDuration_us,
|
|
pDmax_mm);
|
|
}
|
|
|
|
LOG_FUNCTION_END(Status);
|
|
return Status;
|
|
}
|
|
|
|
VL53L0X_Error VL53L0X_get_pal_range_status(VL53L0X_DEV Dev,
|
|
uint8_t DeviceRangeStatus,
|
|
FixPoint1616_t SignalRate,
|
|
uint16_t EffectiveSpadRtnCount,
|
|
VL53L0X_RangingMeasurementData_t *pRangingMeasurementData,
|
|
uint8_t *pPalRangeStatus)
|
|
{
|
|
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
|
|
uint8_t NoneFlag;
|
|
uint8_t SigmaLimitflag = 0;
|
|
uint8_t SignalRefClipflag = 0;
|
|
uint8_t RangeIgnoreThresholdflag = 0;
|
|
uint8_t SigmaLimitCheckEnable = 0;
|
|
uint8_t SignalRateFinalRangeLimitCheckEnable = 0;
|
|
uint8_t SignalRefClipLimitCheckEnable = 0;
|
|
uint8_t RangeIgnoreThresholdLimitCheckEnable = 0;
|
|
FixPoint1616_t SigmaEstimate;
|
|
FixPoint1616_t SigmaLimitValue;
|
|
FixPoint1616_t SignalRefClipValue;
|
|
FixPoint1616_t RangeIgnoreThresholdValue;
|
|
FixPoint1616_t SignalRatePerSpad;
|
|
uint8_t DeviceRangeStatusInternal = 0;
|
|
uint16_t tmpWord = 0;
|
|
uint8_t Temp8;
|
|
uint32_t Dmax_mm = 0;
|
|
FixPoint1616_t LastSignalRefMcps;
|
|
|
|
LOG_FUNCTION_START("");
|
|
|
|
|
|
/*
|
|
* VL53L0X has a good ranging when the value of the
|
|
* DeviceRangeStatus = 11. This function will replace the value 0 with
|
|
* the value 11 in the DeviceRangeStatus.
|
|
* In addition, the SigmaEstimator is not included in the VL53L0X
|
|
* DeviceRangeStatus, this will be added in the PalRangeStatus.
|
|
*/
|
|
|
|
DeviceRangeStatusInternal = ((DeviceRangeStatus & 0x78) >> 3);
|
|
|
|
if (DeviceRangeStatusInternal == 0 ||
|
|
DeviceRangeStatusInternal == 5 ||
|
|
DeviceRangeStatusInternal == 7 ||
|
|
DeviceRangeStatusInternal == 12 ||
|
|
DeviceRangeStatusInternal == 13 ||
|
|
DeviceRangeStatusInternal == 14 ||
|
|
DeviceRangeStatusInternal == 15
|
|
) {
|
|
NoneFlag = 1;
|
|
} else {
|
|
NoneFlag = 0;
|
|
}
|
|
|
|
/*
|
|
* Check if Sigma limit is enabled, if yes then do comparison with limit
|
|
* value and put the result back into pPalRangeStatus.
|
|
*/
|
|
if (Status == VL53L0X_ERROR_NONE)
|
|
Status = VL53L0X_GetLimitCheckEnable(Dev,
|
|
VL53L0X_CHECKENABLE_SIGMA_FINAL_RANGE,
|
|
&SigmaLimitCheckEnable);
|
|
|
|
if ((SigmaLimitCheckEnable != 0) && (Status == VL53L0X_ERROR_NONE)) {
|
|
/*
|
|
* compute the Sigma and check with limit
|
|
*/
|
|
Status = VL53L0X_calc_sigma_estimate(
|
|
Dev,
|
|
pRangingMeasurementData,
|
|
&SigmaEstimate,
|
|
&Dmax_mm);
|
|
if (Status == VL53L0X_ERROR_NONE)
|
|
pRangingMeasurementData->RangeDMaxMilliMeter = Dmax_mm;
|
|
|
|
if (Status == VL53L0X_ERROR_NONE) {
|
|
Status = VL53L0X_GetLimitCheckValue(Dev,
|
|
VL53L0X_CHECKENABLE_SIGMA_FINAL_RANGE,
|
|
&SigmaLimitValue);
|
|
|
|
if ((SigmaLimitValue > 0) &&
|
|
(SigmaEstimate > SigmaLimitValue))
|
|
/* Limit Fail */
|
|
SigmaLimitflag = 1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check if Signal ref clip limit is enabled, if yes then do comparison
|
|
* with limit value and put the result back into pPalRangeStatus.
|
|
*/
|
|
if (Status == VL53L0X_ERROR_NONE)
|
|
Status = VL53L0X_GetLimitCheckEnable(Dev,
|
|
VL53L0X_CHECKENABLE_SIGNAL_REF_CLIP,
|
|
&SignalRefClipLimitCheckEnable);
|
|
|
|
if ((SignalRefClipLimitCheckEnable != 0) &&
|
|
(Status == VL53L0X_ERROR_NONE)) {
|
|
|
|
Status = VL53L0X_GetLimitCheckValue(Dev,
|
|
VL53L0X_CHECKENABLE_SIGNAL_REF_CLIP,
|
|
&SignalRefClipValue);
|
|
|
|
/* Read LastSignalRefMcps from device */
|
|
if (Status == VL53L0X_ERROR_NONE)
|
|
Status = VL53L0X_WrByte(Dev, 0xFF, 0x01);
|
|
|
|
if (Status == VL53L0X_ERROR_NONE)
|
|
Status = VL53L0X_RdWord(Dev,
|
|
VL53L0X_REG_RESULT_PEAK_SIGNAL_RATE_REF,
|
|
&tmpWord);
|
|
|
|
if (Status == VL53L0X_ERROR_NONE)
|
|
Status = VL53L0X_WrByte(Dev, 0xFF, 0x00);
|
|
|
|
LastSignalRefMcps = VL53L0X_FIXPOINT97TOFIXPOINT1616(tmpWord);
|
|
PALDevDataSet(Dev, LastSignalRefMcps, LastSignalRefMcps);
|
|
|
|
if ((SignalRefClipValue > 0) &&
|
|
(LastSignalRefMcps > SignalRefClipValue)) {
|
|
/* Limit Fail */
|
|
SignalRefClipflag = 1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check if Signal ref clip limit is enabled, if yes then do comparison
|
|
* with limit value and put the result back into pPalRangeStatus.
|
|
* EffectiveSpadRtnCount has a format 8.8
|
|
* If (Return signal rate < (1.5 x Xtalk x number of Spads)) : FAIL
|
|
*/
|
|
if (Status == VL53L0X_ERROR_NONE)
|
|
Status = VL53L0X_GetLimitCheckEnable(Dev,
|
|
VL53L0X_CHECKENABLE_RANGE_IGNORE_THRESHOLD,
|
|
&RangeIgnoreThresholdLimitCheckEnable);
|
|
|
|
if ((RangeIgnoreThresholdLimitCheckEnable != 0) &&
|
|
(Status == VL53L0X_ERROR_NONE)) {
|
|
|
|
/* Compute the signal rate per spad */
|
|
if (EffectiveSpadRtnCount == 0) {
|
|
SignalRatePerSpad = 0;
|
|
} else {
|
|
SignalRatePerSpad = (FixPoint1616_t)((256 * SignalRate)
|
|
/ EffectiveSpadRtnCount);
|
|
}
|
|
|
|
Status = VL53L0X_GetLimitCheckValue(Dev,
|
|
VL53L0X_CHECKENABLE_RANGE_IGNORE_THRESHOLD,
|
|
&RangeIgnoreThresholdValue);
|
|
|
|
if ((RangeIgnoreThresholdValue > 0) &&
|
|
(SignalRatePerSpad < RangeIgnoreThresholdValue)) {
|
|
/* Limit Fail add 2^6 to range status */
|
|
RangeIgnoreThresholdflag = 1;
|
|
}
|
|
}
|
|
|
|
if (Status == VL53L0X_ERROR_NONE) {
|
|
if (NoneFlag == 1) {
|
|
*pPalRangeStatus = 255; /* NONE */
|
|
} else if (DeviceRangeStatusInternal == 1 ||
|
|
DeviceRangeStatusInternal == 2 ||
|
|
DeviceRangeStatusInternal == 3) {
|
|
*pPalRangeStatus = 5; /* HW fail */
|
|
} else if (DeviceRangeStatusInternal == 6 ||
|
|
DeviceRangeStatusInternal == 9) {
|
|
*pPalRangeStatus = 4; /* Phase fail */
|
|
} else if (DeviceRangeStatusInternal == 8 ||
|
|
DeviceRangeStatusInternal == 10 ||
|
|
SignalRefClipflag == 1) {
|
|
*pPalRangeStatus = 3; /* Min range */
|
|
} else if (DeviceRangeStatusInternal == 4 ||
|
|
RangeIgnoreThresholdflag == 1) {
|
|
*pPalRangeStatus = 2; /* Signal Fail */
|
|
} else if (SigmaLimitflag == 1) {
|
|
*pPalRangeStatus = 1; /* Sigma Fail */
|
|
} else {
|
|
*pPalRangeStatus = 0; /* Range Valid */
|
|
}
|
|
}
|
|
|
|
/* DMAX only relevant during range error */
|
|
if (*pPalRangeStatus == 0)
|
|
pRangingMeasurementData->RangeDMaxMilliMeter = 0;
|
|
|
|
/* fill the Limit Check Status */
|
|
|
|
Status = VL53L0X_GetLimitCheckEnable(Dev,
|
|
VL53L0X_CHECKENABLE_SIGNAL_RATE_FINAL_RANGE,
|
|
&SignalRateFinalRangeLimitCheckEnable);
|
|
|
|
if (Status == VL53L0X_ERROR_NONE) {
|
|
if ((SigmaLimitCheckEnable == 0) || (SigmaLimitflag == 1))
|
|
Temp8 = 1;
|
|
else
|
|
Temp8 = 0;
|
|
VL53L0X_SETARRAYPARAMETERFIELD(Dev, LimitChecksStatus,
|
|
VL53L0X_CHECKENABLE_SIGMA_FINAL_RANGE, Temp8);
|
|
|
|
if ((DeviceRangeStatusInternal == 4) ||
|
|
(SignalRateFinalRangeLimitCheckEnable == 0))
|
|
Temp8 = 1;
|
|
else
|
|
Temp8 = 0;
|
|
VL53L0X_SETARRAYPARAMETERFIELD(Dev, LimitChecksStatus,
|
|
VL53L0X_CHECKENABLE_SIGNAL_RATE_FINAL_RANGE,
|
|
Temp8);
|
|
|
|
if ((SignalRefClipLimitCheckEnable == 0) ||
|
|
(SignalRefClipflag == 1))
|
|
Temp8 = 1;
|
|
else
|
|
Temp8 = 0;
|
|
|
|
VL53L0X_SETARRAYPARAMETERFIELD(Dev, LimitChecksStatus,
|
|
VL53L0X_CHECKENABLE_SIGNAL_REF_CLIP, Temp8);
|
|
|
|
if ((RangeIgnoreThresholdLimitCheckEnable == 0) ||
|
|
(RangeIgnoreThresholdflag == 1))
|
|
Temp8 = 1;
|
|
else
|
|
Temp8 = 0;
|
|
|
|
VL53L0X_SETARRAYPARAMETERFIELD(Dev, LimitChecksStatus,
|
|
VL53L0X_CHECKENABLE_RANGE_IGNORE_THRESHOLD,
|
|
Temp8);
|
|
}
|
|
|
|
LOG_FUNCTION_END(Status);
|
|
return Status;
|
|
|
|
}
|