/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file    tim.c
  * @brief   This file provides code for the configuration
  *          of the TIM instances.
  ******************************************************************************
  * @attention
  *
  * Copyright (c) 2022 STMicroelectronics.
  * All rights reserved.
  *
  * This software is licensed under terms that can be found in the LICENSE file
  * in the root directory of this software component.
  * If no LICENSE file comes with this software, it is provided AS-IS.
  *
  ******************************************************************************
  */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "tim.h"
#include "main.h"
#include "stdio.h"
#include "ev1527.h"
/* USER CODE BEGIN 0 */
extern TIM_HandleTypeDef htim1, htim2;

// DMA_HandleTypeDef hdma_tim1_ch1;			//PA8 WS2812B

//DMA_HandleTypeDef hdma_tim1_ch2;			//PA9 WS2812B

// TIM_HandleTypeDef htim1;

/* USER CODE BEGIN PV */
#if 0

extern volatile uint32_t capture_Buf[3];	// counter
extern volatile uint8_t capture_Cnt;			// state
extern volatile uint32_t high_time, low_time;	// high level duration, low level duration




/* Captured Value */
extern  uint32_t            uwIC2Value;
/* Duty Cycle Value */
extern  uint32_t            uwDutyCycle;
/* Frequency Value */
extern  uint32_t            uwFrequency;
#endif

uint8_t bit=0;
#if 0
/* Captured Values */
extern uint32_t uwIC2Value1;
extern uint32_t uwIC2Value2;
extern uint32_t uwDiffCapture;

/* Capture index */
extern uint16_t uhCaptureIndex;

/* Frequency Value */
extern uint32_t uwFrequency;
#endif
/* USER CODE END PV */


/* USER CODE END 0 */
#if 0
/**
  * @brief TIM1 Initialization Function
  * @param None
  * @retval None
  */
void MX_TIM1_Init(void)
{

  /* USER CODE BEGIN TIM1_Init 0 */

  /* USER CODE END TIM1_Init 0 */

  //TIM_SlaveConfigTypeDef sSlaveConfig = {0};
  TIM_MasterConfigTypeDef sMasterConfig = {0};
  TIM_IC_InitTypeDef sConfigIC = {0};

  /* USER CODE BEGIN TIM1_Init 1 */

  /* USER CODE END TIM1_Init 1 */
  htim1.Instance = TIM1;
  htim1.Init.Prescaler = TIM1_PRESCALER_VALUE;
  htim1.Init.CounterMode = TIM_COUNTERMODE_UP;
  htim1.Init.Period = 9*TIM1_PERIOD_VALUE;	 // TIM1_PERIOD_VALUE; // 0xffff; // TIM1_PERIOD_VALUE;
  htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  htim1.Init.RepetitionCounter = 0;
  htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
#if 1
  if (HAL_TIM_Base_Init(&htim1) != HAL_OK)
  {
    Error_Handler();
  }
#endif

#if 1
  if (HAL_TIM_IC_Init(&htim1) != HAL_OK)
  {
    Error_Handler();
  }
#endif

#if 0
  sSlaveConfig.SlaveMode = TIM_SLAVEMODE_RESET;
  sSlaveConfig.InputTrigger = TIM_TS_TI2FP2;
  sSlaveConfig.TriggerPolarity = TIM_INPUTCHANNELPOLARITY_RISING;
  sSlaveConfig.TriggerFilter = 0;
  if (HAL_TIM_SlaveConfigSynchro(&htim1, &sSlaveConfig) != HAL_OK)
  {
    Error_Handler();
  }
#endif
#if 1
  sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
  sMasterConfig.MasterOutputTrigger2 = TIM_TRGO2_RESET;
  sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  if (HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig) != HAL_OK)
  {
    Error_Handler();
  }
#endif
  //sConfigIC.ICPolarity = TIM_INPUTCHANNELPOLARITY_FALLING;
  sConfigIC.ICPolarity = TIM_INPUTCHANNELPOLARITY_RISING;
  // sConfigIC.ICSelection = TIM_ICSELECTION_INDIRECTTI;
  sConfigIC.ICSelection = TIM_ICSELECTION_DIRECTTI;
  sConfigIC.ICPrescaler = TIM_ICPSC_DIV1;
  sConfigIC.ICFilter = 0;
  if (HAL_TIM_IC_ConfigChannel(&htim1, &sConfigIC, TIM_CHANNEL_2) != HAL_OK)
  {
	  printf("\r\n tim1 ch1 falling config error \r\n");
    Error_Handler();
  }
#if 1
  sConfigIC.ICPolarity = TIM_INPUTCHANNELPOLARITY_FALLING;
  sConfigIC.ICSelection = TIM_ICSELECTION_DIRECTTI;
  if (HAL_TIM_IC_ConfigChannel(&htim1, &sConfigIC, TIM_CHANNEL_1) != HAL_OK)
  {
	  printf("\r\n tim1 ch2 rising config error \r\n");
    Error_Handler();
  }
#endif
  /* USER CODE BEGIN TIM1_Init 2 */

  /* USER CODE END TIM1_Init 2 */

}

#endif

/**
  * @brief TIM2 Initialization Function
  * @param None
  * @retval None
  */
void MX_TIM2_Init(void)
{

  /* USER CODE BEGIN TIM2_Init 0 */

  /* USER CODE END TIM2_Init 0 */

  TIM_ClockConfigTypeDef sClockSourceConfig = {0};
  TIM_MasterConfigTypeDef sMasterConfig = {0};

  /* USER CODE BEGIN TIM2_Init 1 */

  /* USER CODE END TIM2_Init 1 */
  htim2.Instance = TIM2;
  htim2.Init.Prescaler = PRESCALER_VALUE;
  htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
  htim2.Init.Period = PERIOD_VALUE;
  htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  if (HAL_TIM_Base_Init(&htim2) != HAL_OK)
  {
    Error_Handler();
  }
  sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK)
  {
    Error_Handler();
  }
  sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
  sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN TIM2_Init 2 */

  /* USER CODE END TIM2_Init 2 */

}


#if 1

#define	EV1527_H4			328		// NARROW PULSE WIDTH us, varies on different remote control
#define	EV1527_H4_MIN		(EV1527_H4 * 90 / 100)
#define	EV1527_H4_MAX		(EV1527_H4 * 110 / 100)

#define	EV1527_H12			1100	//	998		// WIDE PULSE WIDTH us, varies on different remote control
#define	EV1527_H12_MIN		(EV1527_H12 * 90 / 100)
#define	EV1527_H12_MAX		(EV1527_H12 * 110 / 100)

#define	EV1527_L4			EV1527_H4		// WIDE PULSE WIDTH us
#define	EV1527_L4_MIN		(EV1527_L4 * 90 / 100)
#define	EV1527_L4_MAX		(EV1527_L4 * 110 / 100)

#define	EV1527_L12			EV1527_H12		// WIDE PULSE WIDTH us
#define	EV1527_L12_MIN		(EV1527_L12 * 90 / 100)
#define	EV1527_L12_MAX		(EV1527_L12 * 110 / 100)

#define	EV1527_SYN_L		11981-328		// SYNC PULSE LOW WIDTH us, HIGH TIME=EV1527_H4
#define	EV1527_SYN_MIN		(EV1527_L12 * 90 / 100)
#define	EV1527_SYN_MAX		(EV1527_L12 * 110 / 100)


static uint32_t highCnt =0, lowCnt =0; //pulse high and low duration
static uint32_t syn =0, code =0, pulseCnt =0;	// sync, parsed code, bit cnt used in decoding process

void EV1527Reset(void)
{
	highCnt = 0;
	lowCnt 	= 0;
	syn		= 0;
	code 	= 0;
	pulseCnt= 0;
}

void EV1527Decode(uint32_t v)
{
	code <<= 1;
	if (v)
	{
		code |= 1;
	}
	pulseCnt ++;
	//printf("c: %ld, p= %ld \r\n", v, pulseCnt);
	if(pulseCnt == 24)
	{
		// 1. same valid code received more than 1 times
		// 2. always same code all the time, send out/up once
		// 3. some long press application, say tune up light, +++ send up/out
		// 4. send up/out via message queue
		printf("Addr: %ld, code= %ld \r\n", code >> 4, code&0x000000FF);
		EV1527Reset();
	}
}

void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{
#if 0
	if (TIM1 == htim->Instance)
	{
		printf(".");
	} else
		if (TIM2 == htim->Instance)
#endif
	{
		RF_Signal_Decode();

	}

}

#endif



#if 0
/* TIM1 init function */
void MX_TIM1_Init(void)
{

  /* USER CODE BEGIN TIM1_Init 0 */

  /* USER CODE END TIM1_Init 0 */

  TIM_ClockConfigTypeDef sClockSourceConfig = {0};
  TIM_MasterConfigTypeDef sMasterConfig = {0};
  TIM_OC_InitTypeDef sConfigOC = {0};
  TIM_BreakDeadTimeConfigTypeDef sBreakDeadTimeConfig = {0};

  /* USER CODE BEGIN TIM1_Init 1 */

  /* USER CODE END TIM1_Init 1 */
  htim1.Instance = TIM1;
  htim1.Init.Prescaler = 48 -1;
  htim1.Init.CounterMode = TIM_COUNTERMODE_UP;
  htim1.Init.Period = 0xffff -1;
  htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  htim1.Init.RepetitionCounter = 0;
  htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE;//TIM_AUTORELOAD_PRELOAD_DISABLE;
  if (HAL_TIM_Base_Init(&htim1) != HAL_OK)
  {
    Error_Handler();
  }
  sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  if (HAL_TIM_ConfigClockSource(&htim1, &sClockSourceConfig) != HAL_OK)
  {
    Error_Handler();
  }
  if (HAL_TIM_PWM_Init(&htim1) != HAL_OK)
  {
    Error_Handler();
  }
  sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
  sMasterConfig.MasterOutputTrigger2 = TIM_TRGO2_RESET;
  sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  if (HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig) != HAL_OK)
  {
    Error_Handler();
  }
  sConfigOC.OCMode = TIM_OCMODE_PWM1;
  sConfigOC.Pulse = 0;
  sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
  sConfigOC.OCNPolarity = TIM_OCNPOLARITY_HIGH;
  sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
  sConfigOC.OCIdleState = TIM_OCIDLESTATE_RESET;	//TIM_OCIDLESTATE_RESET;
  sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_RESET;
  if (HAL_TIM_PWM_ConfigChannel(&htim1, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
  {
    Error_Handler();
  }
#if 1
  sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_DISABLE;
  sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE;
  sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF;
  sBreakDeadTimeConfig.DeadTime = 0;
  sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE;
  sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_HIGH;
  sBreakDeadTimeConfig.BreakFilter = 0;
  sBreakDeadTimeConfig.BreakAFMode = TIM_BREAK_AFMODE_INPUT;
  sBreakDeadTimeConfig.Break2State = TIM_BREAK2_DISABLE;
  sBreakDeadTimeConfig.Break2Polarity = TIM_BREAK2POLARITY_HIGH;
  sBreakDeadTimeConfig.Break2Filter = 0;
  sBreakDeadTimeConfig.Break2AFMode = TIM_BREAK_AFMODE_INPUT;
  sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE;
  if (HAL_TIMEx_ConfigBreakDeadTime(&htim1, &sBreakDeadTimeConfig) != HAL_OK)
  {
    Error_Handler();
  }
#endif
  /* USER CODE BEGIN TIM1_Init 2 */

  /* USER CODE END TIM1_Init 2 */
  HAL_TIM_MspPostInit(&htim1);

}

void HAL_TIM_Base_MspInit(TIM_HandleTypeDef* tim_baseHandle)
{

  if(tim_baseHandle->Instance==TIM1)
  {
  /* USER CODE BEGIN TIM1_MspInit 0 */

  /* USER CODE END TIM1_MspInit 0 */
    /* TIM1 clock enable */
    __HAL_RCC_TIM1_CLK_ENABLE();

    /* TIM1 DMA Init */
    /* TIM1_CH1 Init */
    hdma_tim1_ch1.Instance = DMA1_Channel1;

    hdma_tim1_ch1.Init.Request = DMA_REQUEST_TIM1_CH1;
    hdma_tim1_ch1.Init.Direction = DMA_MEMORY_TO_PERIPH;
    hdma_tim1_ch1.Init.PeriphInc = DMA_PINC_DISABLE;
    hdma_tim1_ch1.Init.MemInc = DMA_MINC_ENABLE;
    hdma_tim1_ch1.Init.PeriphDataAlignment = DMA_PDATAALIGN_HALFWORD;
    hdma_tim1_ch1.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE; //DMA_MDATAALIGN_HALFWORD; 		//DMA_MDATAALIGN_HALFWORD;
    hdma_tim1_ch1.Init.Mode = DMA_CIRCULAR;
    hdma_tim1_ch1.Init.Priority = DMA_PRIORITY_HIGH;		//was HIGH

    if (HAL_DMA_Init(&hdma_tim1_ch1) != HAL_OK)
    {
      Error_Handler();
    }
#ifdef STM32WL55xx
    if (HAL_DMA_ConfigChannelAttributes(&hdma_tim1_ch1, DMA_CHANNEL_NPRIV) != HAL_OK)
    {
      Error_Handler();
    }
#endif
    __HAL_LINKDMA(tim_baseHandle,hdma[TIM_DMA_ID_CC1],hdma_tim1_ch1);

  /* USER CODE BEGIN TIM1_MspInit 1 */

  /* USER CODE END TIM1_MspInit 1 */
  }
  
}
void HAL_TIM_MspPostInit(TIM_HandleTypeDef* timHandle)
{

  GPIO_InitTypeDef GPIO_InitStruct = {0};
  if(timHandle->Instance==TIM1)
  {
  /* USER CODE BEGIN TIM1_MspPostInit 0 */

  /* USER CODE END TIM1_MspPostInit 0 */
    __HAL_RCC_GPIOA_CLK_ENABLE();
    /**TIM1 GPIO Configuration
    PA8     ------> TIM1_CH1
    */
    GPIO_InitStruct.Pin = GPIO_PIN_8;
    GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
    GPIO_InitStruct.Pull = GPIO_PULLUP;	//GPIO_NOPULL;
    GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
    GPIO_InitStruct.Alternate = GPIO_AF1_TIM1;
    HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);

  /* USER CODE BEGIN TIM1_MspPostInit 1 */

  /* USER CODE END TIM1_MspPostInit 1 */
  }
  
}

void HAL_TIM_Base_MspDeInit(TIM_HandleTypeDef* tim_baseHandle)
{

  if(tim_baseHandle->Instance==TIM1)
  {
  /* USER CODE BEGIN TIM1_MspDeInit 0 */

  /* USER CODE END TIM1_MspDeInit 0 */
    /* Peripheral clock disable */
    __HAL_RCC_TIM1_CLK_DISABLE();

    /* TIM1 DMA DeInit */
    HAL_DMA_DeInit(tim_baseHandle->hdma[TIM_DMA_ID_CC1]);
  /* USER CODE BEGIN TIM1_MspDeInit 1 */

  /* USER CODE END TIM1_MspDeInit 1 */
  }
  
}
#endif

/* 获取高电平的时间 */
uint8_t Get_Pulse_Time(void)
{
  uint8_t time = 0;
  while( RF_Receive_Data_In() )
  {
    time ++;
    HAL_Delay_Us(1);
    if(time == 250)
      return time;   // 超时溢出
  }
  return time;
}



/* USER CODE BEGIN 1 */

/* USER CODE END 1 */