/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * * Copyright (c) 2021 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" #include "app_lorawan.h" #include "gpio.h" #include "usart.h" #include "stdio.h" #include "ev1527.h" #include "tim.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ // #include "i2c.h" // #include "app_tof.h" /* USER CODE END Includes */ // #include "sts_aq_o3.h" /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ TIM_HandleTypeDef htim1; #if 1 /* Captured Values */ uint32_t uwIC2Value1 = 0; uint32_t uwIC2Value2 = 0; uint32_t uwDiffCapture = 0; /* Capture index */ uint16_t uhCaptureIndex = 0; /* Frequency Value */ uint32_t uwFrequency = 0; #endif /* USER CODE BEGIN PV */ #if 1 /* Captured Value */ uint32_t uwIC2Value = 0; /* Duty Cycle Value */ uint32_t uwDutyCycle = 0; /* Frequency Value */ // uint32_t uwFrequency = 0; #endif #if 1 volatile uint32_t capture_Buf[3]={0}; // counter volatile uint8_t capture_Cnt=0; // state volatile uint32_t high_time, low_time; // high level duration, low level duration #endif //uint8_t rf_payload[3]={0xF8,0xCD,0x07}, rf_length=3; uint8_t rf_payload[3]={0x1F,0xB3,0xE0}, rf_length=3; // RC_PROJECTOR uint8_t sos_rf_payload[3]={0x82,0x73,0xA0}, sos_rf_length=3; // sos_button enum rf_cmd_enum { BUTTON_NONE=0, BUTTON_ON, BUTTON_OFF, BUTTON_FIRST, BUTTON_NEXT, BUTTON_5S, BUTTON_10S, BUTTON_15S, BUTTON_30S, BUTTON_9,BUTTON_10,BUTTON_11,BUTTON_12,BUTTON_13,BUTTON_14,BUTTON_15, }; uint8_t rf_cmd[16]={0x00, 0x8,0xC,0x4,0x6,0x1,0x9,0x2,0x3}; // cmd 1 = 1, cmd2=4, cmd3=3, cmd4=2 uint8_t sos_rf_cmd[16]={0x00, 0x1,0x0,0x0,0x0,0x0,0x0,0x0,0x0}; // cmd 1 = 1 void sts_rc_key(uint8_t key); void sts_rc_decoder(void); uint8_t sts_rc_decodedx(void); volatile uint8_t codexx=0, code_vt=0; /* USER CODE END PTD */ uint8_t rc_cmd[9]={ RC_NONE, RC_POWER_ON, RC_POWER_OFF, RC_PIC_FIRST, RC_PIC_NEXT, RC_SHOW_5S, RC_SHOW_10S, RC_SHOW_15S, RC_SHOW_30S }; /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ /* USER CODE BEGIN PV */ /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); /* USER CODE BEGIN PFP */ /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ int _write(int file, char *ptr, int len) { (void) file; HAL_UART_Transmit (&huart2, (uint8_t*)ptr, len, 0xFFFF); return len; } /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ // MX_I2C2_Init(); MX_GPIO_Init(); // MX_LoRaWAN_Init(); /* USER CODE BEGIN 2 */ MX_USART2_UART_Init(); // MX_USART1_UART_Init(); MX_TIM1_Init(); printf("start \r\n"); // EV1527_Init(); EV1527Reset(); #if 0 /*## Start the Input Capture in interrupt mode ##########################*/ if (HAL_TIM_IC_Start_IT(&htim1, TIM_CHANNEL_2) != HAL_OK) { printf("tim1 ch2 start IT error \r\n"); /* Starting Error */ Error_Handler(); } #endif #if 0 while (0) { HAL_Delay_Us(1000); HAL_GPIO_WritePin(GPIOA, GPIO_PIN_8, GPIO_PIN_SET); HAL_Delay_Us(1000); HAL_GPIO_WritePin(GPIOA, GPIO_PIN_8, GPIO_PIN_RESET); } #endif /* --------------------------------------------------------------------------- TIM1 configuration: PWM Input mode In this example TIM1 input clock (TIM1CLK) is set to APB2 clock (PCLK2), since APB2 prescaler is 1. TIM1CLK = PCLK2 PCLK2 = HCLK => TIM1CLK = HCLK = SystemCoreClock External Signal Frequency = TIM1 counter clock / TIM1_CCR2 in Hz. External Signal DutyCycle = (TIM1_CCR1*100)/(TIM1_CCR2) in %. --------------------------------------------------------------------------- */ #if 1 /*## Start the Input Capture in interrupt mode ##########################*/ if (HAL_TIM_IC_Start_IT(&htim1, TIM_CHANNEL_2) != HAL_OK) { /* Starting Error */ Error_Handler(); } #endif #if 1 /*## Start the Input Capture in interrupt mode ##########################*/ if (HAL_TIM_IC_Start_IT(&htim1, TIM_CHANNEL_1) != HAL_OK) { /* Starting Error */ Error_Handler(); } #endif while(1) { #if 0 switch(capture_Cnt) { case 0: capture_Cnt ++; //printf("cc: %ld \r\n", capture_Cnt); //TIM_SET_CAPTUREPOLARITY(&htim1, TIM_CHANNEL_2, TIM_INPUTCHANNELPOLARITY_RISING); __HAL_TIM_SET_CAPTUREPOLARITY(&htim1,TIM_CHANNEL_2,TIM_INPUTCHANNELPOLARITY_RISING); HAL_TIM_IC_Start_IT(&htim1, TIM_CHANNEL_2); // or _HAL_TIM_ENABLE(&htim1); break; case 3: high_time = capture_Buf[1] - capture_Buf[0]; // high time low_time = capture_Buf[2] - capture_Buf[1]; // low time if (low_time/high_time > 2) printf("_"); if (high_time/low_time > 2) printf("+"); // HAL_UART_Transmit(&huart2, (uint8_t*)high_time, 1, 0xffff); // print high time //HAL_Delay(1000); //delay 1 s //HAL_Delay_Us(1000000); capture_Cnt = 0; // clear flag break; } #endif } while(1) { // printf("uwF=%ld Hz\r\n", uwFrequency); // STS_RF_Send_Multi_Times(payload, 3, 5); } #if 0 RF_Read_TIM_init(); uint8_t vt=0; uint8_t codex=0; uint32_t k=0; #endif #if 0 EV1527_Init(); while(1) { RF_Signal_Decode(); HAL_Delay(1/20); } #endif #if 0 // for(i=0; i<16; i++) { printf("\r\n Set Key down \r\n"); HAL_GPIO_WritePin(RC_SET_GPIO_Port, RC_SET_Pin, GPIO_PIN_RESET); HAL_Delay(3000); while(1) { k=0; printf("\r\n Scan code \r\n"); codex =0; codexx =0; do { // sts_rc_key(i); //codex = sts_rc_decodedx(); codex = codexx; vt=HAL_GPIO_ReadPin(RC_VT_GPIO_Port, RC_VT_Pin); if (vt||code_vt) { printf("+++\r\n"); } // HAL_Delay(10); k++; }while ((vt==0)); printf("\r\n Cycle=%ld decoded x= %02x vt=%02x\r\n", k, codexx, code_vt); HAL_Delay(1000); } } #endif #if 0 uint8_t i; while (1) { for(i=0; i<6; i++) { printf("\r\n Remote control Key down =%d \r\n", i); sts_rc_key(i); HAL_Delay(3000); printf("\r\n Remote control decoded: %02x \r\n", codexx); // sts_rc_decoder(); HAL_Delay(3000); codexx=0; } HAL_Delay(2000); } #endif /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { /* USER CODE END WHILE */ MX_LoRaWAN_Process(); /* USER CODE BEGIN 3 */ } /* USER CODE END 3 */ } #if 0 void RF_Read_TIM_init(void) { TIM_Base_InitTypeDef TIM_Base_Init_Struct; NVIC_InitTypeDef NVIC_Init_Struct; RF_Read_TIM_RCC; TIM_Base_Init_Struct.TIM_ClockDivision = TIM_CKD_DIV1; TIM_Base_Init_Struct.TIM_CounterMode = TIM_CounterMode_Up; // every int trigger time = [(Tim_Period+1)*(TIM_Prescaler+1)/(SystemCoreClock)] (s) TIM_Base_Init_Struct.Tim_Prescalar = 48 -1; TIM_Base_Init_Struct.Tim_Period = 0xffff -1; TIM_Base_Init_Struct.TIM_RepetitionCounter = 0; TIM_TimeBaseInit(RF_Read_TIM_TIMx, &TIM_Init_Struct); TIM_ITConfig(RF_Read_TIM_TIMx, TIM_IT_Update, ENABLE); } #endif void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin) { uint8_t single_button =0; switch(GPIO_Pin) { case BUT1_Pin: #if 0 printf("Button 1 pressed, sending cmd #1 \r\n"); //STS_RF_Send_AddressBit_and_CmdBit(rf_payload, rf_length); // STS_RF_Send_Multi_Times(rf_payload, 3, 8); single_button = rf_cmd[BUTTON_ON]; STS_RF_Send_Button_Multi_Times(rf_payload, single_button, 3, 8); #endif printf("SOS Button pressed, sending cmd #1 \r\n"); //STS_RF_Send_AddressBit_and_CmdBit(rf_payload, rf_length); // STS_RF_Send_Multi_Times(rf_payload, 3, 8); single_button = sos_rf_cmd[BUTTON_ON]; STS_RF_Send_Button_Multi_Times(sos_rf_payload, single_button, 3, 8); break; case BUT2_Pin: printf("Button 2 pressed, sending cmd #2 \r\n"); single_button = rf_cmd[BUTTON_OFF]; // STS_RF_Send_Multi_Times(rf_payload, 3, 5); STS_RF_Send_Button_Multi_Times(rf_payload, single_button, 3, 8); break; case BUT3_Pin: printf("Button 3 pressed, sending cmd #3 \r\n"); single_button = rf_cmd[BUTTON_NEXT]; // STS_RF_Send_Multi_Times(rf_payload, 3, 5); STS_RF_Send_Button_Multi_Times(rf_payload, single_button, 3, 8); break; case DATA_433_PIN: //printf("^"); HAL_TIM_IC_CaptureCallback(&htim1); //RF_Signal_Decode(); break; default: break; } #if 0 codexx =0; switch (GPIO_Pin) { case RC_D0_Pin: codexx |= (HAL_GPIO_ReadPin(RC_D0_GPIO_Port, RC_D0_Pin)<<0); printf("[0]=%02x ",codexx); break; case RC_D1_Pin: codexx |= (HAL_GPIO_ReadPin(RC_D1_GPIO_Port, RC_D1_Pin)<<1); printf("[1]=%02x ",codexx); break; case RC_D2_Pin: codexx |= (HAL_GPIO_ReadPin(RC_D2_GPIO_Port, RC_D2_Pin)<<2); printf("[2]=%02x ",codexx); break; case RC_D3_Pin: codexx |= (HAL_GPIO_ReadPin(RC_D3_GPIO_Port, RC_D3_Pin)<<3); printf("[3]=%02x ",codexx); break; #if 0 case RC_D4_Pin: codexx |= (HAL_GPIO_ReadPin(RC_D4_GPIO_Port, RC_D4_Pin)<<4); printf("[4]=%02x ",codexx); break; case RC_D5_Pin: codexx |= (HAL_GPIO_ReadPin(RC_D5_GPIO_Port, RC_D5_Pin)<<5); printf("[5]=%02x ",codexx); break; case RC_D6_Pin: codexx |= (HAL_GPIO_ReadPin(RC_D6_GPIO_Port, RC_D6_Pin)<<6); printf("[6]=%02x ",codexx); break; case RC_D7_Pin: codexx |= (HAL_GPIO_ReadPin(RC_D7_GPIO_Port, RC_D7_Pin)<<7); printf("[7]=%02x ",codexx); break; #endif case RC_VT_Pin: code_vt = (HAL_GPIO_ReadPin(RC_VT_GPIO_Port, RC_VT_Pin)); printf("[V]=%02x ",codexx); break; default: break; } #endif } #if 0 void sts_rc_key(uint8_t key) { HAL_GPIO_WritePin(RC_K0_GPIO_Port, RC_K0_Pin, GPIO_PIN_SET); HAL_GPIO_WritePin(RC_K1_GPIO_Port, RC_K1_Pin, GPIO_PIN_SET); HAL_GPIO_WritePin(RC_K2_GPIO_Port, RC_K2_Pin, GPIO_PIN_SET); HAL_GPIO_WritePin(RC_K3_GPIO_Port, RC_K3_Pin, GPIO_PIN_SET); HAL_Delay(100); switch (key) { case 0: HAL_GPIO_WritePin(RC_K0_GPIO_Port, RC_K0_Pin, GPIO_PIN_SET); HAL_GPIO_WritePin(RC_K1_GPIO_Port, RC_K1_Pin, GPIO_PIN_SET); HAL_GPIO_WritePin(RC_K2_GPIO_Port, RC_K2_Pin, GPIO_PIN_SET); HAL_GPIO_WritePin(RC_K3_GPIO_Port, RC_K3_Pin, GPIO_PIN_SET); break; case 1: HAL_GPIO_WritePin(RC_K0_GPIO_Port, RC_K0_Pin, GPIO_PIN_RESET); HAL_GPIO_WritePin(RC_K1_GPIO_Port, RC_K1_Pin, GPIO_PIN_SET); HAL_GPIO_WritePin(RC_K2_GPIO_Port, RC_K2_Pin, GPIO_PIN_SET); HAL_GPIO_WritePin(RC_K3_GPIO_Port, RC_K3_Pin, GPIO_PIN_SET); break; case 2: HAL_GPIO_WritePin(RC_K0_GPIO_Port, RC_K0_Pin, GPIO_PIN_SET); HAL_GPIO_WritePin(RC_K1_GPIO_Port, RC_K1_Pin, GPIO_PIN_RESET); HAL_GPIO_WritePin(RC_K2_GPIO_Port, RC_K2_Pin, GPIO_PIN_SET); HAL_GPIO_WritePin(RC_K3_GPIO_Port, RC_K3_Pin, GPIO_PIN_SET); break; case 3: HAL_GPIO_WritePin(RC_K0_GPIO_Port, RC_K0_Pin, GPIO_PIN_RESET); HAL_GPIO_WritePin(RC_K1_GPIO_Port, RC_K1_Pin, GPIO_PIN_SET); HAL_GPIO_WritePin(RC_K2_GPIO_Port, RC_K2_Pin, GPIO_PIN_RESET); HAL_GPIO_WritePin(RC_K3_GPIO_Port, RC_K3_Pin, GPIO_PIN_SET); break; case 4: HAL_GPIO_WritePin(RC_K0_GPIO_Port, RC_K0_Pin, GPIO_PIN_SET); HAL_GPIO_WritePin(RC_K1_GPIO_Port, RC_K1_Pin, GPIO_PIN_SET); HAL_GPIO_WritePin(RC_K2_GPIO_Port, RC_K2_Pin, GPIO_PIN_RESET); HAL_GPIO_WritePin(RC_K3_GPIO_Port, RC_K3_Pin, GPIO_PIN_SET); break; case 5: HAL_GPIO_WritePin(RC_K0_GPIO_Port, RC_K0_Pin, GPIO_PIN_RESET); HAL_GPIO_WritePin(RC_K1_GPIO_Port, RC_K1_Pin, GPIO_PIN_SET); HAL_GPIO_WritePin(RC_K2_GPIO_Port, RC_K2_Pin, GPIO_PIN_RESET); HAL_GPIO_WritePin(RC_K3_GPIO_Port, RC_K3_Pin, GPIO_PIN_SET); break; case 6: HAL_GPIO_WritePin(RC_K0_GPIO_Port, RC_K0_Pin, GPIO_PIN_SET); HAL_GPIO_WritePin(RC_K1_GPIO_Port, RC_K1_Pin, GPIO_PIN_RESET); HAL_GPIO_WritePin(RC_K2_GPIO_Port, RC_K2_Pin, GPIO_PIN_RESET); HAL_GPIO_WritePin(RC_K3_GPIO_Port, RC_K3_Pin, GPIO_PIN_SET); break; case 7: HAL_GPIO_WritePin(RC_K0_GPIO_Port, RC_K0_Pin, GPIO_PIN_SET); HAL_GPIO_WritePin(RC_K1_GPIO_Port, RC_K1_Pin, GPIO_PIN_RESET); HAL_GPIO_WritePin(RC_K2_GPIO_Port, RC_K2_Pin, GPIO_PIN_SET); HAL_GPIO_WritePin(RC_K3_GPIO_Port, RC_K3_Pin, GPIO_PIN_RESET); break; } } uint8_t sts_rc_decodedx(void) { uint8_t codelow4=0, codehigh4=0; codelow4 = (HAL_GPIO_ReadPin(RC_D0_GPIO_Port, RC_D0_Pin)<<0)|(HAL_GPIO_ReadPin(RC_D1_GPIO_Port, RC_D1_Pin)<<1)|(HAL_GPIO_ReadPin(RC_D2_GPIO_Port, RC_D2_Pin)<<2)|(HAL_GPIO_ReadPin(RC_D3_GPIO_Port, RC_D3_Pin)<<3); codehigh4 = (HAL_GPIO_ReadPin(RC_D4_GPIO_Port, RC_D4_Pin)<<4)|(HAL_GPIO_ReadPin(RC_D5_GPIO_Port, RC_D5_Pin)<<5)|(HAL_GPIO_ReadPin(RC_D6_GPIO_Port, RC_D6_Pin)<<6)|(HAL_GPIO_ReadPin(RC_D7_GPIO_Port, RC_D7_Pin)<<7); // printf("%02x \r", (codehigh4|codelow4)); return (codehigh4|codelow4); } void sts_rc_decoder(void) { uint8_t codex=0; codex = HAL_GPIO_ReadPin(RC_D0_GPIO_Port, RC_D0_Pin)|(HAL_GPIO_ReadPin(RC_D1_GPIO_Port, RC_D1_Pin)<<1)|(HAL_GPIO_ReadPin(RC_D2_GPIO_Port, RC_D2_Pin)<<2)|(HAL_GPIO_ReadPin(RC_D3_GPIO_Port, RC_D3_Pin)<<3); printf("decoded x= %02x \r\n", codex); } #endif /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Configure LSE Drive Capability */ HAL_PWR_EnableBkUpAccess(); __HAL_RCC_LSEDRIVE_CONFIG(RCC_LSEDRIVE_LOW); /** Configure the main internal regulator output voltage */ __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1); /** Initializes the CPU, AHB and APB buses clocks */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSE|RCC_OSCILLATORTYPE_MSI; RCC_OscInitStruct.LSEState = RCC_LSE_ON; RCC_OscInitStruct.MSIState = RCC_MSI_ON; RCC_OscInitStruct.MSICalibrationValue = RCC_MSICALIBRATION_DEFAULT; RCC_OscInitStruct.MSIClockRange = RCC_MSIRANGE_11; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Configure the SYSCLKSource, HCLK, PCLK1 and PCLK2 clocks dividers */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK3|RCC_CLOCKTYPE_HCLK |RCC_CLOCKTYPE_SYSCLK|RCC_CLOCKTYPE_PCLK1 |RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_MSI; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; RCC_ClkInitStruct.AHBCLK3Divider = RCC_SYSCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK) { Error_Handler(); } } /* USER CODE BEGIN 4 */ /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ __disable_irq(); while (1) { } /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ while (1) { } /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */