/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file tim.c * @brief This file provides code for the configuration * of the TIM instances. ****************************************************************************** * @attention * * Copyright (c) 2022 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "tim.h" #include "main.h" #include "stdio.h" #include "ev1527.h" /* USER CODE BEGIN 0 */ extern TIM_HandleTypeDef htim1; // DMA_HandleTypeDef hdma_tim1_ch1; //PA8 WS2812B //DMA_HandleTypeDef hdma_tim1_ch2; //PA9 WS2812B // TIM_HandleTypeDef htim1; /* USER CODE BEGIN PV */ #if 1 extern volatile uint32_t capture_Buf[3]; // counter extern volatile uint8_t capture_Cnt; // state extern volatile uint32_t high_time, low_time; // high level duration, low level duration /* Captured Value */ extern uint32_t uwIC2Value; /* Duty Cycle Value */ extern uint32_t uwDutyCycle; /* Frequency Value */ extern uint32_t uwFrequency; #endif uint8_t bit=0; #if 1 /* Captured Values */ extern uint32_t uwIC2Value1; extern uint32_t uwIC2Value2; extern uint32_t uwDiffCapture; /* Capture index */ extern uint16_t uhCaptureIndex; /* Frequency Value */ extern uint32_t uwFrequency; #endif /* USER CODE END PV */ /* USER CODE END 0 */ /** * @brief TIM1 Initialization Function * @param None * @retval None */ void MX_TIM1_Init(void) { /* USER CODE BEGIN TIM1_Init 0 */ /* USER CODE END TIM1_Init 0 */ //TIM_SlaveConfigTypeDef sSlaveConfig = {0}; TIM_MasterConfigTypeDef sMasterConfig = {0}; TIM_IC_InitTypeDef sConfigIC = {0}; /* USER CODE BEGIN TIM1_Init 1 */ /* USER CODE END TIM1_Init 1 */ htim1.Instance = TIM1; htim1.Init.Prescaler = TIM1_PRESCALER_VALUE; htim1.Init.CounterMode = TIM_COUNTERMODE_UP; htim1.Init.Period = 0xffff; // TIM1_PERIOD_VALUE; // 0xffff; // TIM1_PERIOD_VALUE; htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; htim1.Init.RepetitionCounter = 0; htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE; #if 0 if (HAL_TIM_Base_Init(&htim1) != HAL_OK) { Error_Handler(); } #endif if (HAL_TIM_IC_Init(&htim1) != HAL_OK) { Error_Handler(); } #if 0 sSlaveConfig.SlaveMode = TIM_SLAVEMODE_RESET; sSlaveConfig.InputTrigger = TIM_TS_TI2FP2; sSlaveConfig.TriggerPolarity = TIM_INPUTCHANNELPOLARITY_RISING; sSlaveConfig.TriggerFilter = 0; if (HAL_TIM_SlaveConfigSynchro(&htim1, &sSlaveConfig) != HAL_OK) { Error_Handler(); } #endif #if 1 sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET; sMasterConfig.MasterOutputTrigger2 = TIM_TRGO2_RESET; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; if (HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig) != HAL_OK) { Error_Handler(); } #endif //sConfigIC.ICPolarity = TIM_INPUTCHANNELPOLARITY_FALLING; sConfigIC.ICPolarity = TIM_INPUTCHANNELPOLARITY_RISING; // sConfigIC.ICSelection = TIM_ICSELECTION_INDIRECTTI; sConfigIC.ICSelection = TIM_ICSELECTION_DIRECTTI; sConfigIC.ICPrescaler = TIM_ICPSC_DIV1; sConfigIC.ICFilter = 0; if (HAL_TIM_IC_ConfigChannel(&htim1, &sConfigIC, TIM_CHANNEL_2) != HAL_OK) { printf("\r\n tim1 ch1 falling config error \r\n"); Error_Handler(); } #if 1 sConfigIC.ICPolarity = TIM_INPUTCHANNELPOLARITY_FALLING; sConfigIC.ICSelection = TIM_ICSELECTION_DIRECTTI; if (HAL_TIM_IC_ConfigChannel(&htim1, &sConfigIC, TIM_CHANNEL_1) != HAL_OK) { printf("\r\n tim1 ch2 rising config error \r\n"); Error_Handler(); } #endif /* USER CODE BEGIN TIM1_Init 2 */ /* USER CODE END TIM1_Init 2 */ } #if 1 #define EV1527_H4 328 // NARROW PULSE WIDTH us, varies on different remote control #define EV1527_H4_MIN (EV1527_H4 * 90 / 100) #define EV1527_H4_MAX (EV1527_H4 * 110 / 100) #define EV1527_H12 1100 // 998 // WIDE PULSE WIDTH us, varies on different remote control #define EV1527_H12_MIN (EV1527_H12 * 90 / 100) #define EV1527_H12_MAX (EV1527_H12 * 110 / 100) #define EV1527_L4 EV1527_H4 // WIDE PULSE WIDTH us #define EV1527_L4_MIN (EV1527_L4 * 90 / 100) #define EV1527_L4_MAX (EV1527_L4 * 110 / 100) #define EV1527_L12 EV1527_H12 // WIDE PULSE WIDTH us #define EV1527_L12_MIN (EV1527_L12 * 90 / 100) #define EV1527_L12_MAX (EV1527_L12 * 110 / 100) #define EV1527_SYN_L 11981-328 // SYNC PULSE LOW WIDTH us, HIGH TIME=EV1527_H4 #define EV1527_SYN_MIN (EV1527_L12 * 90 / 100) #define EV1527_SYN_MAX (EV1527_L12 * 110 / 100) static uint32_t highCnt =0, lowCnt =0; //pulse high and low duration static uint32_t syn =0, code =0, pulseCnt =0; // sync, parsed code, bit cnt used in decoding process void EV1527Reset(void) { highCnt = 0; lowCnt = 0; syn = 0; code = 0; pulseCnt= 0; } void EV1527Decode(uint32_t v) { code <<= 1; if (v) { code |= 1; } pulseCnt ++; //printf("c: %ld, p= %ld \r\n", v, pulseCnt); if(pulseCnt == 24) { // 1. same valid code received more than 1 times // 2. always same code all the time, send out/up once // 3. some long press application, say tune up light, +++ send up/out // 4. send up/out via message queue printf("Addr: %ld, code= %ld \r\n", code >> 4, code&0x000000FF); EV1527Reset(); } } void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim) { static uint32_t uwICValue; static uint32_t last_uwICValue; uint32_t uwDiffCapture; static uint32_t highCnt=0, lowCnt=0; static uint8_t sync=0; //printf(" cc "); // RF_Signal_Decode(); //if (TIM1 == htim->Instance) { //if ((htim->Channel == HAL_TIM_ACTIVE_CHANNEL_2)) { if (HAL_GPIO_ReadPin(RF_Receive_GPIO_Port,RF_Receive_GPIO_Pin)== GPIO_PIN_RESET) { // Falling edge //printf(">"); highCnt = HAL_TIM_ReadCapturedValue(&htim1, TIM_CHANNEL_2); // get current value } else if ((HAL_GPIO_ReadPin(RF_Receive_GPIO_Port,RF_Receive_GPIO_Pin) == GPIO_PIN_SET)) { // Rising edge lowCnt = HAL_TIM_ReadCapturedValue(&htim1, TIM_CHANNEL_2); // get current value if (syn == 1) { // sync then decode if ((lowCnt > EV1527_L4_MIN) && (highCnt < EV1527_L4_MAX)) { if ((lowCnt > EV1527_H12_MIN) && (highCnt < EV1527_H12_MAX)) { // short pulse, there must be a valid long pulse, data=1, otherwise error EV1527Decode(1); } else { EV1527Reset(); // error handling } } } else if ((lowCnt > EV1527_L12_MIN) && (lowCnt < EV1527_L12_MAX)) { if ((highCnt > EV1527_H4_MIN) && (highCnt < EV1527_H4_MAX)) { // long pulse, there must be a valid short pulse, data =0, otherwise error EV1527Decode(0); } else { EV1527Reset(); // error handling } } } else { if ((lowCnt > EV1527_SYN_MIN) && (lowCnt < EV1527_SYN_MAX)) { // sync feature Low level if ((highCnt > EV1527_H4_MIN) && (highCnt < EV1527_H4_MAX)) { // and there must be a valid sync high pulse, sync starting (may also be error code) syn = 1; pulseCnt = 0; code = 0; //printf("sync: %d \r\n", lowCnt); } } } } } } #endif /** * @brief Input Capture callback in non blocking mode * @param htim : TIM IC handle * @retval None */ #if 0 void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim) { static uint32_t uwICValue; static uint32_t last_uwICValue; uint32_t uwDiffCapture; // printf(" cc "); // RF_Signal_Decode(); if (TIM1 == htim->Instance) { // if ((htim->Channel == HAL_TIM_ACTIVE_CHANNEL_2)||(htim->Channel == HAL_TIM_ACTIVE_CHANNEL_1)) // if ((htim->Channel == HAL_TIM_ACTIVE_CHANNEL_2)) { switch(capture_Cnt) { case 1: capture_Buf[0] = HAL_TIM_ReadCapturedValue(&htim1, TIM_CHANNEL_2); // get current value //printf("B0:%ld ", capture_Buf[0]); //printf("/"); TIM_SET_CAPTUREPOLARITY(&htim1, TIM_CHANNEL_2, TIM_ICPOLARITY_FALLING); // set falling edge capture capture_Cnt ++; break; case 2: capture_Buf[1] = HAL_TIM_ReadCapturedValue(&htim1, TIM_CHANNEL_2); // get current value //printf("B1:%ld ", capture_Buf[1]); //printf("_"); //HAL_TIM_IC_Stop_IT(&htim1, TIM_CHANNEL_2); // stop capture or _HAL_TIM_DISABLE(&htim1); TIM_SET_CAPTUREPOLARITY(&htim1, TIM_CHANNEL_2, TIM_ICPOLARITY_RISING); // set falling edge capture capture_Cnt ++; case 3: capture_Buf[2] = HAL_TIM_ReadCapturedValue(&htim1, TIM_CHANNEL_2); // get current value //printf("B2:%ld ", capture_Buf[2]); printf(")"); HAL_TIM_IC_Stop_IT(&htim1, TIM_CHANNEL_2); // stop capture or _HAL_TIM_DISABLE(&htim1); //TIM_SET_CAPTUREPOLARITY(&htim1, TIM_CHANNEL_2, TIM_ICPOLARITY_RISING); // set falling edge capture // capture_Cnt ++; break; } // RF_Signal_Decode(); } } } #endif #if 0 /* USER CODE BEGIN 4 */ /** * @brief Input capture callback in non blocking mode * @param htim : htim handle * @retval None */ void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim) { if (htim->Channel == HAL_TIM_ACTIVE_CHANNEL_2) { if(uhCaptureIndex == 0) { /* Get the 1st Input Capture value */ uwIC2Value1 = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_2); uhCaptureIndex = 1; printf("Capture_state=%d \r\n",uhCaptureIndex); } else if(uhCaptureIndex == 1) { /* Get the 2nd Input Capture value */ uwIC2Value2 = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_2); /* Capture computation */ if (uwIC2Value2 > uwIC2Value1) { uwDiffCapture = (uwIC2Value2 - uwIC2Value1); } else if (uwIC2Value2 < uwIC2Value1) { /* 0xFFFF is max TIM1_CCRx value */ uwDiffCapture = ((0xFFFF - uwIC2Value1) + uwIC2Value2) + 1; } else { /* If capture values are equal, we have reached the limit of frequency measures */ Error_Handler(); } #if 1 /* Frequency computation: for this example TIMx (TIM1) is clocked by APB2Clk */ uwFrequency = HAL_RCC_GetPCLK2Freq() / uwDiffCapture; printf("diff=%ld uwF=%ld Hz\r\n", uwDiffCapture, uwFrequency); // uhCaptureIndex = 0; #endif if ((uwDiffCapture > 100) && (uwDiffCapture < 300)) { uhCaptureIndex = 2; printf("Capture_state=%d \r\n",uhCaptureIndex); } } else if (uhCaptureIndex ==2) { /* Get the 2nd Input Capture value */ uwIC2Value1 = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_2); uhCaptureIndex = 3; } else if (uhCaptureIndex ==3) { uwIC2Value2 = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_2); /* Capture computation */ if (uwIC2Value2 > uwIC2Value1) { uwDiffCapture = (uwIC2Value2 - uwIC2Value1); } else if (uwIC2Value2 < uwIC2Value1) { /* 0xFFFF is max TIM1_CCRx value */ uwDiffCapture = ((0xFFFF - uwIC2Value1) + uwIC2Value2) + 1; } else { /* If capture values are equal, we have reached the limit of frequency measures */ Error_Handler(); } if ((uwDiffCapture > 300) && (uwDiffCapture < 500)) { bit0_high =1; } else if ((uwDiffCapture > 500) && (uwDiffCapture < 1100)) { bit0_low =1; } uwIC2Value1 = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_2); uhCaptureIndex = 2; } } } #endif #if 0 /** * @brief Input Capture callback in non blocking mode * @param htim : TIM IC handle * @retval None */ void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim) { if (htim->Channel == HAL_TIM_ACTIVE_CHANNEL_2) { /* Get the Input Capture value */ uwIC2Value = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_2); if (uwIC2Value != 0) { /* Duty cycle computation */ // uwDutyCycle = ((HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_2)) * 100) / uwIC2Value; uwDutyCycle = ((HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_2) - uwIC2Value) * 100) / uwIC2Value; if ( uwDutyCycle > 70) { bit = 1; } else if (uwDutyCycle < 30) { bit = 0; } printf("%2d ", bit); /* uwFrequency computation TIM1 counter clock = (System Clock) */ // uwFrequency = ( HAL_RCC_GetSysClockFreq() ) / uwIC2Value; // printf("f=%ld duty=%ld \r\n", uwFrequency, uwDutyCycle); } else { uwDutyCycle = 0; uwFrequency = 0; } } } #endif #if 0 /** * @brief Input Capture callback in non blocking mode * @param htim : TIM IC handle * @retval None */ void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim) { if (htim->Channel == HAL_TIM_ACTIVE_CHANNEL_2) { /* Get the Input Capture value */ uwIC2Value = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_2); if (uwIC2Value != 0) { /* Duty cycle computation */ uwDutyCycle = ((HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_2)) * 100) / uwIC2Value; /* uwFrequency computation TIM1 counter clock = (System Clock) */ uwFrequency = ( HAL_RCC_GetSysClockFreq() ) / uwIC2Value; printf("f=%ld duty=%ld \r\n", uwFrequency, uwDutyCycle); } else { uwDutyCycle = 0; uwFrequency = 0; } } } #endif #if 0 /* TIM1 init function */ void MX_TIM1_Init(void) { /* USER CODE BEGIN TIM1_Init 0 */ /* USER CODE END TIM1_Init 0 */ TIM_ClockConfigTypeDef sClockSourceConfig = {0}; TIM_MasterConfigTypeDef sMasterConfig = {0}; TIM_OC_InitTypeDef sConfigOC = {0}; TIM_BreakDeadTimeConfigTypeDef sBreakDeadTimeConfig = {0}; /* USER CODE BEGIN TIM1_Init 1 */ /* USER CODE END TIM1_Init 1 */ htim1.Instance = TIM1; htim1.Init.Prescaler = 48 -1; htim1.Init.CounterMode = TIM_COUNTERMODE_UP; htim1.Init.Period = 0xffff -1; htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; htim1.Init.RepetitionCounter = 0; htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE;//TIM_AUTORELOAD_PRELOAD_DISABLE; if (HAL_TIM_Base_Init(&htim1) != HAL_OK) { Error_Handler(); } sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL; if (HAL_TIM_ConfigClockSource(&htim1, &sClockSourceConfig) != HAL_OK) { Error_Handler(); } if (HAL_TIM_PWM_Init(&htim1) != HAL_OK) { Error_Handler(); } sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET; sMasterConfig.MasterOutputTrigger2 = TIM_TRGO2_RESET; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; if (HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig) != HAL_OK) { Error_Handler(); } sConfigOC.OCMode = TIM_OCMODE_PWM1; sConfigOC.Pulse = 0; sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH; sConfigOC.OCNPolarity = TIM_OCNPOLARITY_HIGH; sConfigOC.OCFastMode = TIM_OCFAST_DISABLE; sConfigOC.OCIdleState = TIM_OCIDLESTATE_RESET; //TIM_OCIDLESTATE_RESET; sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_RESET; if (HAL_TIM_PWM_ConfigChannel(&htim1, &sConfigOC, TIM_CHANNEL_1) != HAL_OK) { Error_Handler(); } #if 1 sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_DISABLE; sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE; sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF; sBreakDeadTimeConfig.DeadTime = 0; sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE; sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_HIGH; sBreakDeadTimeConfig.BreakFilter = 0; sBreakDeadTimeConfig.BreakAFMode = TIM_BREAK_AFMODE_INPUT; sBreakDeadTimeConfig.Break2State = TIM_BREAK2_DISABLE; sBreakDeadTimeConfig.Break2Polarity = TIM_BREAK2POLARITY_HIGH; sBreakDeadTimeConfig.Break2Filter = 0; sBreakDeadTimeConfig.Break2AFMode = TIM_BREAK_AFMODE_INPUT; sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE; if (HAL_TIMEx_ConfigBreakDeadTime(&htim1, &sBreakDeadTimeConfig) != HAL_OK) { Error_Handler(); } #endif /* USER CODE BEGIN TIM1_Init 2 */ /* USER CODE END TIM1_Init 2 */ HAL_TIM_MspPostInit(&htim1); } void HAL_TIM_Base_MspInit(TIM_HandleTypeDef* tim_baseHandle) { if(tim_baseHandle->Instance==TIM1) { /* USER CODE BEGIN TIM1_MspInit 0 */ /* USER CODE END TIM1_MspInit 0 */ /* TIM1 clock enable */ __HAL_RCC_TIM1_CLK_ENABLE(); /* TIM1 DMA Init */ /* TIM1_CH1 Init */ hdma_tim1_ch1.Instance = DMA1_Channel1; hdma_tim1_ch1.Init.Request = DMA_REQUEST_TIM1_CH1; hdma_tim1_ch1.Init.Direction = DMA_MEMORY_TO_PERIPH; hdma_tim1_ch1.Init.PeriphInc = DMA_PINC_DISABLE; hdma_tim1_ch1.Init.MemInc = DMA_MINC_ENABLE; hdma_tim1_ch1.Init.PeriphDataAlignment = DMA_PDATAALIGN_HALFWORD; hdma_tim1_ch1.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE; //DMA_MDATAALIGN_HALFWORD; //DMA_MDATAALIGN_HALFWORD; hdma_tim1_ch1.Init.Mode = DMA_CIRCULAR; hdma_tim1_ch1.Init.Priority = DMA_PRIORITY_HIGH; //was HIGH if (HAL_DMA_Init(&hdma_tim1_ch1) != HAL_OK) { Error_Handler(); } #ifdef STM32WL55xx if (HAL_DMA_ConfigChannelAttributes(&hdma_tim1_ch1, DMA_CHANNEL_NPRIV) != HAL_OK) { Error_Handler(); } #endif __HAL_LINKDMA(tim_baseHandle,hdma[TIM_DMA_ID_CC1],hdma_tim1_ch1); /* USER CODE BEGIN TIM1_MspInit 1 */ /* USER CODE END TIM1_MspInit 1 */ } } void HAL_TIM_MspPostInit(TIM_HandleTypeDef* timHandle) { GPIO_InitTypeDef GPIO_InitStruct = {0}; if(timHandle->Instance==TIM1) { /* USER CODE BEGIN TIM1_MspPostInit 0 */ /* USER CODE END TIM1_MspPostInit 0 */ __HAL_RCC_GPIOA_CLK_ENABLE(); /**TIM1 GPIO Configuration PA8 ------> TIM1_CH1 */ GPIO_InitStruct.Pin = GPIO_PIN_8; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = GPIO_PULLUP; //GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; GPIO_InitStruct.Alternate = GPIO_AF1_TIM1; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); /* USER CODE BEGIN TIM1_MspPostInit 1 */ /* USER CODE END TIM1_MspPostInit 1 */ } } void HAL_TIM_Base_MspDeInit(TIM_HandleTypeDef* tim_baseHandle) { if(tim_baseHandle->Instance==TIM1) { /* USER CODE BEGIN TIM1_MspDeInit 0 */ /* USER CODE END TIM1_MspDeInit 0 */ /* Peripheral clock disable */ __HAL_RCC_TIM1_CLK_DISABLE(); /* TIM1 DMA DeInit */ HAL_DMA_DeInit(tim_baseHandle->hdma[TIM_DMA_ID_CC1]); /* USER CODE BEGIN TIM1_MspDeInit 1 */ /* USER CODE END TIM1_MspDeInit 1 */ } } #endif /* USER CODE BEGIN 1 */ /* USER CODE END 1 */