STM32CubeWL/Middlewares/Third_Party/LoRaWAN/readme.md

413 lines
18 KiB
Markdown

# LoRaWAN end-device stack implementation and example projects
______ _
/ _____) _ | |
( (____ _____ ____ _| |_ _____ ____| |__
\____ \| ___ | (_ _) ___ |/ ___) _ \
_____) ) ____| | | || |_| ____( (___| | | |
(______/|_____)_|_|_| \__)_____)\____)_| |_|
(C)2013-2022 Semtech
___ _____ _ ___ _ _____ ___ ___ ___ ___
/ __|_ _/_\ / __| |/ / __/ _ \| _ \/ __| __|
\__ \ | |/ _ \ (__| ' <| _| (_) | / (__| _|
|___/ |_/_/ \_\___|_|\_\_| \___/|_|_\\___|___|
embedded.connectivity.solutions===============
## Introduction
The aim of this project is to show an example of an end-device LoRaWAN stack implementation.
This project has 2 active branches in place.
| Branch | L2 spec | RP spec | Tag/Milestone | Class | Comments |
| ------------- |:-------------:|:---------:|:---------:|:---------:|:--------------|
| | [1.0.4](https://resources.lora-alliance.org/technical-specifications/ts001-1-0-4-lorawan-l2-1-0-4-specification) / [1.1.0](https://resources.lora-alliance.org/technical-specifications/lorawan-specification-v1-1) + [FCntDwn ERRATA](https://resources.lora-alliance.org/technical-specifications/fopts-encryption-usage-of-fcntdwn-errata-on-the-lorawan-l2-1-1-specification) | [2-1.0.3](https://resources.lora-alliance.org/technical-specifications/rp2-1-0-3-lorawan-regional-parameters) | [v4.7.0](https://github.com/Lora-net/LoRaMac-node/releases/tag/v4.7.0) | A/B/C | LoRaWAN L2 1.0.4 - **_Released_** |
| [master](https://github.com/Lora-net/LoRaMac-node/tree/master) | [1.0.4](https://resources.lora-alliance.org/technical-specifications/ts001-1-0-4-lorawan-l2-1-0-4-specification) / [1.1.0](https://resources.lora-alliance.org/technical-specifications/lorawan-specification-v1-1) + [FCntDwn ERRATA](https://resources.lora-alliance.org/technical-specifications/fopts-encryption-usage-of-fcntdwn-errata-on-the-lorawan-l2-1-1-specification) | [2-1.0.3](https://resources.lora-alliance.org/technical-specifications/rp2-1-0-3-lorawan-regional-parameters) | [v4.7.0](https://github.com/Lora-net/LoRaMac-node/milestone/10) | A/B/C | LoRaWAN L2 1.0.4 / 1.1.0 |
| [v5.0.0-branch](https://github.com/Lora-net/LoRaMac-node/tree/v5.0.0-branch) | [1.0.4](https://resources.lora-alliance.org/technical-specifications/ts001-1-0-4-lorawan-l2-1-0-4-specification) / [1.1.0](https://resources.lora-alliance.org/technical-specifications/lorawan-specification-v1-1) + [FCntDwn ERRATA](https://resources.lora-alliance.org/technical-specifications/fopts-encryption-usage-of-fcntdwn-errata-on-the-lorawan-l2-1-1-specification) | [2-1.0.3](https://resources.lora-alliance.org/technical-specifications/rp2-1-0-3-lorawan-regional-parameters) | [M 5.0.0](https://github.com/Lora-net/LoRaMac-node/milestone/11) | A/B/C | LoRaWAN L2 1.0.4 / 1.1.0 - Adds support for LR-FHSS modulation |
This project fully implements ClassA, ClassB and ClassC end-device classes and it also provides SX1272/73, SX1276/77/78/79, SX1261/2 and LR1110 radio drivers.
For each currently supported platform example applications are provided.
* **LoRaMac/fuota-test-01**: FUOTA test scenario 01 end-device example application. (Based on provided application common packages)
* **LoRaMac/periodic-uplink-lpp**: ClassA/B/C end-device example application. Periodically uplinks a frame using the Cayenne LPP protocol. (Based on provided application common packages)
* **ping-pong**: Point to point RF link example application.
* **rx-sensi**: Example application useful to measure the radio sensitivity level using an RF generator.
* **tx-cw**: Example application to show how to generate an RF Continuous Wave transmission.
**Note**: *Each LoRaWAN application example (LoRaMac/\*) includes an implementation of the LoRa-Alliance; LoRaWAN certification protocol.*
**Note**: *The LoRaWAN stack API documentation can be found at: http://stackforce.github.io/LoRaMac-doc/*
## Supported platforms
This project currently provides support for the below platforms.
This project can be ported to other platforms using different MCU than the ones currently supported.
The [Porting Guide](https://stackforce.github.io/LoRaMac-doc/LoRaMac-doc-v4.7.0/_p_o_r_t_i_n_g__g_u_i_d_e.html) document provides guide lines on how to port the project to other platforms.
* NAMote72
* [NAMote72 platform documentation](doc/NAMote72-platform.md)
* NucleoLxxx - Discovery kit
* [NucleoLxxx and Discovery kit platforms documentation](doc/NucleoLxxx-platform.md)
* SKiM880B, SKiM980A, SKiM881AXL
* [SKiM88xx platforms documentation](doc/SKiM88xx-platform.md)
* SAMR34
* [SAMR34 platform documentation](doc/SAMR34-platform.md)
## Getting Started
### Prerequisites
Please follow instructions provided by [Development environment](doc/development-environment.md) document.
### Cloning the repository
Clone the repository from GitHub
```bash
$ git clone https://github.com/lora-net/loramac-node.git loramac-node
```
LoRaMac-node project contains Git submodules that must be initialized
```bash
$ cd loramac-node
$ git submodule update --init
```
### Secure-element commissioning
This project currently supports 3 different secure-elements `soft-se`, `lr1110-se`
and `atecc608a-tnglora-se` implementations.
In order to personalize the MCU binary file with LoRaWAN EUIs or/and AES128 keys
one must follow the instructions provided by [soft-se](####soft-se),
[lr1110-se](####lr1110-se) and [atecc608a-tnglora-se](####atecc608a-tnglora-se) chapters
#### soft-se
*soft-se* is a pure software emulation of a secure-element. It means that everything is located on the host MCU memories. The `DevEUI`, `JoinEUI` and `AES128 keys` may be stored on a non-volatile memory through dedicated APIs.
In order to update the end-device identity (`DevEUI`, `JoinEUI` and `AES128 keys`) one must update the `se-identity.h` file located under `./src/peripherals/soft-se/` directory.
**Note:** In previous versions of this project this was done inside `Commissioning.h` files located under each provided example directory.
#### lr1110-se
*lr1110-se* abstraction implementation handles all the required exchanges with the LR1110 radio crypto-engine.
All LR1110 radio chips are pre-provisioned out of factory in order to be used with [LoRa Cloud Device Join Service](https://www.loracloud.com/documentation/join_service).
In case other Join Servers are to be used the `DevEUI`, `Pin`, `JoinEUI` and `AES128 keys` can be updated by following the instructions provided on chapter "13. LR1110 Provisioning" of the [LR1110 User Manual](https://semtech.my.salesforce.com/sfc/p/#E0000000JelG/a/2R000000Q2PM/KGm1YHDoHhtaicNYHCIAnh0CbG3yodEuWWJ2WrFRafM).
When the compile option `SECURE_ELEMENT_PRE_PROVISIONED` is set to `ON` the *lr1110-se* will use the factory provisioned data (`DevEUI`, `JoinEUI` and `AES128 keys`).
When the compile option `SECURE_ELEMENT_PRE_PROVISIONED` is set to `OFF` the *lr1110-se* has to be provisioned by following one of the methods described on chapter "13. LR1110 Provisioning" of the [LR1110 User Manual](https://semtech.my.salesforce.com/sfc/p/#E0000000JelG/a/2R000000Q2PM/KGm1YHDoHhtaicNYHCIAnh0CbG3yodEuWWJ2WrFRafM).
The `DevEUI`, `Pin` and `JoinEUI` can be changed by editing the `se-identity.h` file located in `./src/peripherals/lr1110-se/` directory.
#### atecc608a-tnglora-se
The *atecc608a-tnglora-se* abstraction implementation handles all the required exchanges with the ATECC608A-TNGLORA and ATECC608B-TNGLORA secure-elements.
This secure-element is always pre-provisioned and its contents can't be changed.
### Building Process
#### Command line
**periodic-uplink-lpp** example for NucleoL476 platform with LR1110MB1DIS MBED shield and using LR1110 pre-provisioned secure-element
```bash
$ mkdir build
$ cd build
$ cmake -DCMAKE_BUILD_TYPE=Release \
-DTOOLCHAIN_PREFIX="<replace by toolchain path>" \
-DCMAKE_TOOLCHAIN_FILE="../cmake/toolchain-arm-none-eabi.cmake" \
-DAPPLICATION="LoRaMac" \
-DSUB_PROJECT="periodic-uplink-lpp" \
-DCLASSB_ENABLED="ON" \
-DACTIVE_REGION="LORAMAC_REGION_EU868" \
-DREGION_EU868="ON" \
-DREGION_US915="OFF" \
-DREGION_CN779="OFF" \
-DREGION_EU433="OFF" \
-DREGION_AU915="OFF" \
-DREGION_AS923="OFF" \
-DREGION_CN470="OFF" \
-DREGION_KR920="OFF" \
-DREGION_IN865="OFF" \
-DREGION_RU864="OFF" \
-DBOARD="NucleoL476" \
-DMBED_RADIO_SHIELD="LR1110MB1XXS" \
-DSECURE_ELEMENT="LR1110_SE" \
-DSECURE_ELEMENT_PRE_PROVISIONED="ON" \
-DUSE_RADIO_DEBUG="ON" ..
$ make
```
**ping-pong** example using LoRa modulation for NucleoL476 platform with LR1110MB1DIS MBED shield
```bash
$ mkdir build
$ cd build
$ cmake -DCMAKE_BUILD_TYPE=Release \
-DTOOLCHAIN_PREFIX="<replace by toolchain path>" \
-DCMAKE_TOOLCHAIN_FILE="../cmake/toolchain-arm-none-eabi.cmake" \
-DAPPLICATION="ping-pong" \
-DMODULATION:"LORA" \
-DREGION_EU868="ON" \
-DREGION_US915="OFF" \
-DREGION_CN779="OFF" \
-DREGION_EU433="OFF" \
-DREGION_AU915="OFF" \
-DREGION_AS923="OFF" \
-DREGION_CN470="OFF" \
-DREGION_KR920="OFF" \
-DREGION_IN865="OFF" \
-DREGION_RU864="OFF" \
-DBOARD="NucleoL476" \
-DMBED_RADIO_SHIELD="LR1110MB1XXS" \
-DUSE_RADIO_DEBUG="ON" ..
$ make
```
#### VSCode
**periodic-uplink-lpp** example for NucleoL476 platform with LR1110MB1DIS MBED shield and using LR1110 pre-provisioned secure-element
* Please edit .vscode/settings.json file
<details>
<summary>Click to expand!</summary>
<p>
```json
// Place your settings in this file to overwrite default and user settings.
{
"cmake.configureSettings": {
// In case your GNU ARM-Toolchain is not installed under the default
// path:
// Windows : No default path. Specify the path where the
// toolchain is installed. i.e:
// "C:/PROGRA~2/GNUTOO~1/92019-~1".
// Linux : /usr
// OSX : /usr/local
// It is required to uncomment and to fill the following line.
"TOOLCHAIN_PREFIX":"/path/to/toolchain",
// In case your OpenOCD is not installed under the default path:
// Windows : C:/openocd/bin/openocd.exe
// Linux : /usr/bin/openocd
// OSX : /usr/local/bin/openocd
// Please uncomment the following line and fill it accordingly.
//"OPENOCD_BIN":"C:/openocd/bin/openocd.exe",
// Specifies the path to the CMAKE toolchain file.
"CMAKE_TOOLCHAIN_FILE":"cmake/toolchain-arm-none-eabi.cmake",
// Determines the application. You can choose between:
// LoRaMac (Default), ping-pong, rx-sensi, tx-cw.
"APPLICATION":"LoRaMac",
// Select LoRaMac sub project. You can choose between:
// periodic-uplink-lpp, fuota-test-01.
"SUB_PROJECT":"periodic-uplink-lpp",
// Switch for Class B support of LoRaMac:
"CLASSB_ENABLED":"ON",
// Select the active region for which the stack will be initialized.
// You can choose between:
// LORAMAC_REGION_EU868, LORAMAC_REGION_US915, ..
"ACTIVE_REGION":"LORAMAC_REGION_EU868",
// Select the type of modulation, applicable to the ping-pong or
// rx-sensi applications. You can choose between:
// LORA or FSK
"MODULATION":"LORA",
// Target board, the following boards are supported:
// NAMote72, NucleoL073 (Default), NucleoL152, NucleoL476, SAMR34, SKiM880B, SKiM980A, SKiM881AXL, B-L072Z-LRWAN1.
"BOARD":"NucleoL476",
// MBED Radio shield selection. (Applies only to Nucleo platforms)
// The following shields are supported:
// SX1272MB2DAS, SX1276MB1LAS, SX1276MB1MAS, SX1261MBXBAS(Default), SX1262MBXCAS, SX1262MBXDAS, LR1110MB1XXS.
"MBED_RADIO_SHIELD":"LR1110MB1XXS",
// Secure element type selection the following are supported
// SOFT_SE(Default), LR1110_SE, ATECC608A_TNGLORA_SE
"SECURE_ELEMENT":"LR1110_SE",
// Secure element is pre-provisioned
"SECURE_ELEMENT_PRE_PROVISIONED":"ON",
// Region support activation, Select the ones you want to support.
// By default only REGION_EU868 support is enabled.
"REGION_EU868":"ON",
"REGION_US915":"OFF",
"REGION_CN779":"OFF",
"REGION_EU433":"OFF",
"REGION_AU915":"OFF",
"REGION_AS923":"OFF",
"REGION_CN470":"OFF",
"REGION_KR920":"OFF",
"REGION_IN865":"OFF",
"REGION_RU864":"OFF",
"USE_RADIO_DEBUG":"ON"
}
}
```
</p>
</details>
* Click on "CMake: Debug: Ready" and select build type Debug or Release.
![cmake configure](doc/images/vscode-cmake-configure.png)
* Wait for configuration process to finish
* Click on "Build" to build the project.
![cmake build](doc/images/vscode-cmake-build.png)
* Wait for build process to finish
* Binary files will be available under `./build/src/apps/LoRaMac/`
* LoRaMac-periodic-uplink-lpp - elf format
* LoRaMac-periodic-uplink-lpp.bin - binary format
* LoRaMac-periodic-uplink-lpp.hex - hex format
**ping-pong** example using LoRa modulation for NucleoL476 platform with LR1110MB1DIS MBED shield
* Please edit .vscode/settings.json file
<details>
<summary>Click to expand!</summary>
<p>
```json
// Place your settings in this file to overwrite default and user settings.
{
"cmake.configureSettings": {
// In case your GNU ARM-Toolchain is not installed under the default
// path:
// Windows : No default path. Specify the path where the
// toolchain is installed. i.e:
// "C:/PROGRA~2/GNUTOO~1/92019-~1".
// Linux : /usr
// OSX : /usr/local
// It is required to uncomment and to fill the following line.
"TOOLCHAIN_PREFIX":"/path/to/toolchain",
// In case your OpenOCD is not installed under the default path:
// Windows : C:/openocd/bin/openocd.exe
// Linux : /usr/bin/openocd
// OSX : /usr/local/bin/openocd
// Please uncomment the following line and fill it accordingly.
//"OPENOCD_BIN":"C:/openocd/bin/openocd.exe",
// Specifies the path to the CMAKE toolchain file.
"CMAKE_TOOLCHAIN_FILE":"cmake/toolchain-arm-none-eabi.cmake",
// Determines the application. You can choose between:
// LoRaMac (Default), ping-pong, rx-sensi, tx-cw.
"APPLICATION":"ping-pong",
// Select LoRaMac sub project. You can choose between:
// periodic-uplink-lpp, fuota-test-01.
"SUB_PROJECT":"periodic-uplink-lpp",
// Switch for Class B support of LoRaMac:
"CLASSB_ENABLED":"ON",
// Select the active region for which the stack will be initialized.
// You can choose between:
// LORAMAC_REGION_EU868, LORAMAC_REGION_US915, ..
"ACTIVE_REGION":"LORAMAC_REGION_EU868",
// Select the type of modulation, applicable to the ping-pong or
// rx-sensi applications. You can choose between:
// LORA or FSK
"MODULATION":"LORA",
// Target board, the following boards are supported:
// NAMote72, NucleoL073 (Default), NucleoL152, NucleoL476, SAMR34, SKiM880B, SKiM980A, SKiM881AXL, B-L072Z-LRWAN1.
"BOARD":"NucleoL476",
// MBED Radio shield selection. (Applies only to Nucleo platforms)
// The following shields are supported:
// SX1272MB2DAS, SX1276MB1LAS, SX1276MB1MAS, SX1261MBXBAS(Default), SX1262MBXCAS, SX1262MBXDAS, LR1110MB1XXS.
"MBED_RADIO_SHIELD":"SX1261MBXBAS",
// Secure element type selection the following are supported
// SOFT_SE(Default), LR1110_SE, ATECC608A_TNGLORA_SE
"SECURE_ELEMENT":"SOFT_SE",
// Secure element is pre-provisioned
"SECURE_ELEMENT_PRE_PROVISIONED":"ON",
// Region support activation, Select the ones you want to support.
// By default only REGION_EU868 support is enabled.
"REGION_EU868":"ON",
"REGION_US915":"OFF",
"REGION_CN779":"OFF",
"REGION_EU433":"OFF",
"REGION_AU915":"OFF",
"REGION_AS923":"OFF",
"REGION_CN470":"OFF",
"REGION_KR920":"OFF",
"REGION_IN865":"OFF",
"REGION_RU864":"OFF",
"USE_RADIO_DEBUG":"ON"
}
}
```
</p>
</details>
* Click on "CMake: Debug: Ready" and select build type Debug or Release.
![cmake configure](doc/images/vscode-cmake-configure.png)
* Wait for configuration process to finish
* Click on "Build" to build the project.
![cmake build](doc/images/vscode-cmake-build.png)
* Wait for build process to finish
* Binary files will be available under `./build/src/apps/ping-pong/`
* ping-pong - elf format
* ping-pong.bin - binary format
* ping-pong.hex - hex format
### Serial console NVM management
The `periodic-uplink-lpp` and `fuota-test-01` examples allow to reset the NVM storage through the serial interface.
In order to reset the NVM contents one must hit `ESC` + `N` keyboard keys on a serial terminal.
The serial terminal will show the following after `ESC` + `N` keyboard keys are hit. After resetting the end-device the clean NVM will be used.
```text
ESC + N
NVM factory reset succeed
PLEASE RESET THE END-DEVICE
```
## Acknowledgments
* The mbed (https://mbed.org/) project was used at the beginning as source of
inspiration.
* This program uses the AES algorithm implementation (http://www.gladman.me.uk/) by Brian Gladman.
* This program uses the CMAC algorithm implementation
(http://www.cse.chalmers.se/research/group/dcs/masters/contikisec/) by Lander Casado, Philippas Tsigas.
* [The Things Industries](https://www.thethingsindustries.com/) for providing
Microchip/Atmel SAMR34 platform and ATECC608A-TNGLORA secure-element support.
* Tencent Blade Team for security breach findings and solving propositions.