463 lines
12 KiB
C
463 lines
12 KiB
C
/* USER CODE BEGIN Header */
|
|
/**
|
|
******************************************************************************
|
|
* @file Examples_LL/PKA/PKA_ModularExponentiation/Src/main.c
|
|
* @author MCD Application Team
|
|
* @brief This example describes how to use PKA peripheral to generate an
|
|
* ECDSA signature using the STM32WLxx PKA LL API.
|
|
* Peripheral initialization done using LL unitary services functions.
|
|
******************************************************************************
|
|
* @attention
|
|
*
|
|
* Copyright (c) 2020 STMicroelectronics.
|
|
* All rights reserved.
|
|
*
|
|
* This software is licensed under terms that can be found in the LICENSE file
|
|
* in the root directory of this software component.
|
|
* If no LICENSE file comes with this software, it is provided AS-IS.
|
|
*
|
|
******************************************************************************
|
|
*/
|
|
/* USER CODE END Header */
|
|
/* Includes ------------------------------------------------------------------*/
|
|
#include "main.h"
|
|
|
|
/* Private includes ----------------------------------------------------------*/
|
|
/* USER CODE BEGIN Includes */
|
|
|
|
/* USER CODE END Includes */
|
|
|
|
/* Private typedef -----------------------------------------------------------*/
|
|
/* USER CODE BEGIN PTD */
|
|
|
|
/* USER CODE END PTD */
|
|
|
|
/* Private define ------------------------------------------------------------*/
|
|
/* USER CODE BEGIN PD */
|
|
|
|
/* USER CODE END PD */
|
|
|
|
/* Private macro -------------------------------------------------------------*/
|
|
/* USER CODE BEGIN PM */
|
|
|
|
/* USER CODE END PM */
|
|
|
|
/* Private variables ---------------------------------------------------------*/
|
|
|
|
/* USER CODE BEGIN PV */
|
|
|
|
__IO uint32_t endOfProcess = 0;
|
|
uint8_t buffer[256] = {0};
|
|
|
|
/* USER CODE END PV */
|
|
|
|
/* Private function prototypes -----------------------------------------------*/
|
|
void SystemClock_Config(void);
|
|
static void MX_GPIO_Init(void);
|
|
static void MX_PKA_Init(void);
|
|
/* USER CODE BEGIN PFP */
|
|
|
|
void LED_Init(void);
|
|
void LED_On(void);
|
|
void LED_Blinking(uint32_t Period);
|
|
static uint32_t Buffercmp(const uint8_t* pBuffer1,const uint8_t* pBuffer2, uint32_t BufferLength);
|
|
__IO uint32_t *PKA_Memcpy_u8_to_u32(__IO uint32_t dst[], const uint8_t src[], uint32_t n);
|
|
uint8_t *PKA_Memcpy_u32_to_u8(uint8_t dst[], __IO const uint32_t src[], uint32_t n);
|
|
void PKA_load_ciphering_parameter(void);
|
|
void PKA_load_unciphering_parameter(void);
|
|
|
|
/* USER CODE END PFP */
|
|
|
|
/* Private user code ---------------------------------------------------------*/
|
|
/* USER CODE BEGIN 0 */
|
|
|
|
/* USER CODE END 0 */
|
|
|
|
/**
|
|
* @brief The application entry point.
|
|
* @retval int
|
|
*/
|
|
int main(void)
|
|
{
|
|
/* USER CODE BEGIN 1 */
|
|
|
|
uint32_t result = 0;
|
|
|
|
/* USER CODE END 1 */
|
|
|
|
/* MCU Configuration--------------------------------------------------------*/
|
|
|
|
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
|
|
|
|
/* System interrupt init*/
|
|
NVIC_SetPriorityGrouping(NVIC_PRIORITYGROUP_4);
|
|
|
|
/* USER CODE BEGIN Init */
|
|
|
|
/* USER CODE END Init */
|
|
|
|
/* Configure the system clock */
|
|
SystemClock_Config();
|
|
|
|
/* USER CODE BEGIN SysInit */
|
|
|
|
/* USER CODE END SysInit */
|
|
|
|
/* Initialize all configured peripherals */
|
|
MX_GPIO_Init();
|
|
MX_PKA_Init();
|
|
/* USER CODE BEGIN 2 */
|
|
|
|
/* Set mode to ECDSA signature generation in interrupt mode */
|
|
LL_PKA_SetMode(PKA, LL_PKA_MODE_MONTGOMERY_PARAM_MOD_EXP);
|
|
LL_PKA_EnableIT_ADDRERR(PKA);
|
|
LL_PKA_EnableIT_RAMERR(PKA);
|
|
LL_PKA_EnableIT_PROCEND(PKA);
|
|
|
|
/* FROM PLAINTEXT TO CIPHERTEXT */
|
|
|
|
/* Loads the input buffers to PKA RAM */
|
|
PKA_load_ciphering_parameter();
|
|
|
|
/* Launch the computation in interrupt mode */
|
|
LL_PKA_Start(PKA);
|
|
|
|
/* Wait for the interrupt callback */
|
|
while(endOfProcess != 1);
|
|
endOfProcess = 0;
|
|
|
|
/* Retrieve the result and output buffer */
|
|
PKA_Memcpy_u32_to_u8(buffer, &PKA->RAM[PKA_MODULAR_EXP_OUT_SM_ALGO_ACC1], rsa_pub_2048_modulus_len / 4);
|
|
|
|
/* Compare to expected results */
|
|
result = Buffercmp(buffer, ciphertext_bin, ciphertext_bin_len);
|
|
if (result != 0)
|
|
{
|
|
LED_Blinking(LED_BLINK_ERROR);
|
|
}
|
|
|
|
/* FROM CIPHERTEXT TO PLAINTEXT */
|
|
|
|
/* Loads the input buffers to PKA RAM */
|
|
PKA_load_unciphering_parameter();
|
|
|
|
/* Launch the computation in interrupt mode */
|
|
LL_PKA_Start(PKA);
|
|
|
|
/* Wait for the interrupt callback */
|
|
while(endOfProcess != 1);
|
|
endOfProcess = 0;
|
|
|
|
/* Retrieve the result and output buffer */
|
|
PKA_Memcpy_u32_to_u8(buffer, &PKA->RAM[PKA_MODULAR_EXP_OUT_SM_ALGO_ACC1], rsa_pub_2048_modulus_len / 4);
|
|
|
|
/* Compare to expected results */
|
|
result = Buffercmp(buffer, plaintext_bin, plaintext_bin_len);
|
|
if (result != 0)
|
|
{
|
|
LED_Blinking(LED_BLINK_ERROR);
|
|
}
|
|
|
|
LED_On();
|
|
|
|
/* USER CODE END 2 */
|
|
|
|
/* Infinite loop */
|
|
/* USER CODE BEGIN WHILE */
|
|
while (1)
|
|
{
|
|
/* USER CODE END WHILE */
|
|
|
|
/* USER CODE BEGIN 3 */
|
|
}
|
|
/* USER CODE END 3 */
|
|
}
|
|
|
|
/**
|
|
* @brief System Clock Configuration
|
|
* @retval None
|
|
*/
|
|
void SystemClock_Config(void)
|
|
{
|
|
LL_FLASH_SetLatency(LL_FLASH_LATENCY_0);
|
|
while(LL_FLASH_GetLatency() != LL_FLASH_LATENCY_0)
|
|
{
|
|
}
|
|
|
|
LL_PWR_SetRegulVoltageScaling(LL_PWR_REGU_VOLTAGE_SCALE2);
|
|
LL_RCC_HSI_Enable();
|
|
|
|
/* Wait till HSI is ready */
|
|
while(LL_RCC_HSI_IsReady() != 1)
|
|
{
|
|
}
|
|
|
|
LL_RCC_HSI_SetCalibTrimming(64);
|
|
LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_HSI);
|
|
|
|
/* Wait till System clock is ready */
|
|
while(LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_HSI)
|
|
{
|
|
}
|
|
|
|
LL_RCC_SetAHBPrescaler(LL_RCC_SYSCLK_DIV_1);
|
|
LL_RCC_SetAHB3Prescaler(LL_RCC_SYSCLK_DIV_1);
|
|
LL_RCC_SetAPB1Prescaler(LL_RCC_APB1_DIV_1);
|
|
LL_RCC_SetAPB2Prescaler(LL_RCC_APB2_DIV_1);
|
|
|
|
LL_Init1msTick(16000000);
|
|
|
|
/* Update CMSIS variable (which can be updated also through SystemCoreClockUpdate function) */
|
|
LL_SetSystemCoreClock(16000000);
|
|
}
|
|
|
|
/**
|
|
* @brief PKA Initialization Function
|
|
* @param None
|
|
* @retval None
|
|
*/
|
|
static void MX_PKA_Init(void)
|
|
{
|
|
|
|
/* USER CODE BEGIN PKA_Init 0 */
|
|
|
|
/* USER CODE END PKA_Init 0 */
|
|
|
|
/* Peripheral clock enable */
|
|
LL_AHB3_GRP1_EnableClock(LL_AHB3_GRP1_PERIPH_PKA);
|
|
|
|
/* USER CODE BEGIN PKA_Init 1 */
|
|
|
|
/* USER CODE END PKA_Init 1 */
|
|
LL_PKA_Enable(PKA);
|
|
/* USER CODE BEGIN PKA_Init 2 */
|
|
|
|
/* Configure NVIC for PKA interrupts */
|
|
/* Set priority for PKA_IRQn */
|
|
/* Enable PKA_IRQn */
|
|
NVIC_SetPriority(PKA_IRQn, 0);
|
|
NVIC_EnableIRQ(PKA_IRQn);
|
|
|
|
/* USER CODE END PKA_Init 2 */
|
|
|
|
}
|
|
|
|
/**
|
|
* @brief GPIO Initialization Function
|
|
* @param None
|
|
* @retval None
|
|
*/
|
|
static void MX_GPIO_Init(void)
|
|
{
|
|
LL_GPIO_InitTypeDef GPIO_InitStruct = {0};
|
|
|
|
/* GPIO Ports Clock Enable */
|
|
LL_AHB2_GRP1_EnableClock(LL_AHB2_GRP1_PERIPH_GPIOB);
|
|
|
|
/**/
|
|
LL_GPIO_ResetOutputPin(LED2_GPIO_Port, LED2_Pin);
|
|
|
|
/**/
|
|
GPIO_InitStruct.Pin = LED2_Pin;
|
|
GPIO_InitStruct.Mode = LL_GPIO_MODE_OUTPUT;
|
|
GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_LOW;
|
|
GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_PUSHPULL;
|
|
GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;
|
|
LL_GPIO_Init(LED2_GPIO_Port, &GPIO_InitStruct);
|
|
|
|
}
|
|
|
|
/* USER CODE BEGIN 4 */
|
|
|
|
/**
|
|
* @brief Load into PKA RAM the ciphering parameters.
|
|
* @param None
|
|
* @retval None
|
|
*/
|
|
void PKA_load_ciphering_parameter(void)
|
|
{
|
|
/* Get the number of bit per operand */
|
|
PKA->RAM[PKA_MODULAR_EXP_IN_OP_NB_BITS] = rsa_pub_2048_modulus_len*8;
|
|
|
|
/* Get the number of bit of the exponent */
|
|
PKA->RAM[PKA_MODULAR_EXP_IN_EXP_NB_BITS] = rsa_pub_2048_publicExponent_len*8;
|
|
|
|
/* Move the input parameters pOp1 to PKA RAM */
|
|
PKA_Memcpy_u8_to_u32(&PKA->RAM[PKA_MODULAR_EXP_IN_EXPONENT_BASE], plaintext_bin, rsa_pub_2048_modulus_len);
|
|
PKA->RAM[PKA_MODULAR_EXP_IN_EXPONENT_BASE + rsa_pub_2048_modulus_len / 4] = 0;
|
|
|
|
/* Move the exponent to PKA RAM */
|
|
PKA_Memcpy_u8_to_u32(&PKA->RAM[PKA_MODULAR_EXP_IN_EXPONENT], rsa_pub_2048_publicExponent, rsa_pub_2048_publicExponent_len);
|
|
PKA->RAM[PKA_MODULAR_EXP_IN_EXPONENT + rsa_pub_2048_publicExponent_len / 4] = 0;
|
|
|
|
/* Move the modulus to PKA RAM */
|
|
PKA_Memcpy_u8_to_u32(&PKA->RAM[PKA_MODULAR_EXP_IN_MODULUS], rsa_pub_2048_modulus, rsa_pub_2048_modulus_len);
|
|
PKA->RAM[PKA_MODULAR_EXP_IN_MODULUS + rsa_pub_2048_modulus_len / 4] = 0;
|
|
}
|
|
|
|
/**
|
|
* @brief Load into PKA RAM the unciphering parameters.
|
|
* @param None
|
|
* @retval None
|
|
*/
|
|
void PKA_load_unciphering_parameter(void)
|
|
{
|
|
/* Get the number of bit per operand */
|
|
PKA->RAM[PKA_MODULAR_EXP_IN_OP_NB_BITS] = rsa_pub_2048_modulus_len*8;
|
|
|
|
/* Get the number of bit of the exponent */
|
|
PKA->RAM[PKA_MODULAR_EXP_IN_EXP_NB_BITS] = rsa_priv_2048_privateExponent_len*8;
|
|
|
|
/* Move the input parameters pOp1 to PKA RAM */
|
|
PKA_Memcpy_u8_to_u32(&PKA->RAM[PKA_MODULAR_EXP_IN_EXPONENT_BASE], ciphertext_bin, rsa_pub_2048_modulus_len);
|
|
PKA->RAM[PKA_MODULAR_EXP_IN_EXPONENT_BASE + rsa_pub_2048_modulus_len / 4] = 0;
|
|
|
|
/* Move the exponent to PKA RAM */
|
|
PKA_Memcpy_u8_to_u32(&PKA->RAM[PKA_MODULAR_EXP_IN_EXPONENT], rsa_priv_2048_privateExponent, rsa_priv_2048_privateExponent_len);
|
|
PKA->RAM[PKA_MODULAR_EXP_IN_EXPONENT + rsa_priv_2048_privateExponent_len / 4] = 0;
|
|
|
|
/* Move the modulus to PKA RAM */
|
|
PKA_Memcpy_u8_to_u32(&PKA->RAM[PKA_MODULAR_EXP_IN_MODULUS], rsa_priv_2048_modulus, rsa_pub_2048_modulus_len);
|
|
PKA->RAM[PKA_MODULAR_EXP_IN_MODULUS + rsa_pub_2048_modulus_len / 4] = 0;
|
|
|
|
}
|
|
|
|
|
|
void PKA_ERROR_callback(void)
|
|
{
|
|
LED_Blinking(LED_BLINK_ERROR);
|
|
}
|
|
|
|
void PKA_PROCEND_callback(void)
|
|
{
|
|
endOfProcess = 1;
|
|
}
|
|
/**
|
|
* @brief Compares two buffers.
|
|
* @param pBuffer1, pBuffer2: buffers to be compared.
|
|
* @param BufferLength: buffer's length
|
|
* @retval 0 : pBuffer1 identical to pBuffer2
|
|
* >0 : pBuffer1 differs from pBuffer2
|
|
*/
|
|
static uint32_t Buffercmp(const uint8_t* pBuffer1,const uint8_t* pBuffer2, uint32_t BufferLength)
|
|
{
|
|
while (BufferLength--)
|
|
{
|
|
if ((*pBuffer1) != *pBuffer2)
|
|
{
|
|
return BufferLength;
|
|
}
|
|
pBuffer1++;
|
|
pBuffer2++;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* @brief Copy uint8_t array to uint32_t array to fit PKA number representation.
|
|
* @param dst Pointer to destination
|
|
* @param src Pointer to source
|
|
* @param n Number of u32 to be handled
|
|
* @retval dst
|
|
*/
|
|
__IO uint32_t *PKA_Memcpy_u8_to_u32(__IO uint32_t dst[], const uint8_t src[], uint32_t n)
|
|
{
|
|
const uint32_t *ptrSrc = (const uint32_t *) src;
|
|
|
|
if (dst != 0)
|
|
{
|
|
for (uint32_t index = 0; index < n / 4; index++)
|
|
{
|
|
dst[index] = __REV(ptrSrc[n / 4 - index - 1]);
|
|
}
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
/**
|
|
* @brief Copy uint32_t array to uint8_t array to fit PKA number representation.
|
|
* @param dst Pointer to destination
|
|
* @param src Pointer to source
|
|
* @param n Number of u8 to be handled (must be multiple of 4)
|
|
* @retval dst
|
|
*/
|
|
uint8_t *PKA_Memcpy_u32_to_u8(uint8_t dst[], __IO const uint32_t src[], uint32_t n)
|
|
{
|
|
uint32_t *ptrDst = (uint32_t *) dst;
|
|
if (dst != 0)
|
|
{
|
|
for (uint32_t index = 0; index < n; index++)
|
|
{
|
|
ptrDst[n - index - 1] = __REV(src[index]);
|
|
}
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
/**
|
|
* @brief Turn-on LED2.
|
|
* @param None
|
|
* @retval None
|
|
*/
|
|
void LED_On(void)
|
|
{
|
|
/* Turn LED2 on */
|
|
LL_GPIO_SetOutputPin(LED2_GPIO_Port, LED2_Pin);
|
|
}
|
|
|
|
/**
|
|
* @brief Set LED2 to Blinking mode for an infinite loop (toggle period based on value provided as input parameter).
|
|
* @param Period : Period of time (in ms) between each toggling of LED
|
|
* This parameter can be user defined values. Pre-defined values used in that example are :
|
|
* @arg LED_BLINK_FAST : Fast Blinking
|
|
* @arg LED_BLINK_SLOW : Slow Blinking
|
|
* @arg LED_BLINK_ERROR : Error specific Blinking
|
|
* @retval None
|
|
*/
|
|
void LED_Blinking(uint32_t Period)
|
|
{
|
|
/* Toggle LED2 in an infinite loop */
|
|
while (1)
|
|
{
|
|
LL_GPIO_TogglePin(LED2_GPIO_Port, LED2_Pin);
|
|
LL_mDelay(Period);
|
|
}
|
|
}
|
|
|
|
/* USER CODE END 4 */
|
|
|
|
/**
|
|
* @brief This function is executed in case of error occurrence.
|
|
* @retval None
|
|
*/
|
|
void Error_Handler(void)
|
|
{
|
|
/* USER CODE BEGIN Error_Handler_Debug */
|
|
/* User can add his own implementation to report the HAL error return state */
|
|
|
|
/* USER CODE END Error_Handler_Debug */
|
|
}
|
|
|
|
#ifdef USE_FULL_ASSERT
|
|
/**
|
|
* @brief Reports the name of the source file and the source line number
|
|
* where the assert_param error has occurred.
|
|
* @param file: pointer to the source file name
|
|
* @param line: assert_param error line source number
|
|
* @retval None
|
|
*/
|
|
void assert_failed(uint8_t *file, uint32_t line)
|
|
{
|
|
/* USER CODE BEGIN 6 */
|
|
/* User can add his own implementation to report the file name and line number,
|
|
ex: printf("Wrong parameters value: file %s on line %d", file, line) */
|
|
|
|
/* Infinite loop */
|
|
while (1)
|
|
{
|
|
}
|
|
/* USER CODE END 6 */
|
|
}
|
|
#endif /* USE_FULL_ASSERT */
|