STM32CubeWL/Projects/NUCLEO-WL55JC/Examples_LL/PKA/PKA_ModularExponentiation/Src/main.c

463 lines
12 KiB
C

/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file Examples_LL/PKA/PKA_ModularExponentiation/Src/main.c
* @author MCD Application Team
* @brief This example describes how to use PKA peripheral to generate an
* ECDSA signature using the STM32WLxx PKA LL API.
* Peripheral initialization done using LL unitary services functions.
******************************************************************************
* @attention
*
* Copyright (c) 2020 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
/* USER CODE BEGIN PV */
__IO uint32_t endOfProcess = 0;
uint8_t buffer[256] = {0};
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_PKA_Init(void);
/* USER CODE BEGIN PFP */
void LED_Init(void);
void LED_On(void);
void LED_Blinking(uint32_t Period);
static uint32_t Buffercmp(const uint8_t* pBuffer1,const uint8_t* pBuffer2, uint32_t BufferLength);
__IO uint32_t *PKA_Memcpy_u8_to_u32(__IO uint32_t dst[], const uint8_t src[], uint32_t n);
uint8_t *PKA_Memcpy_u32_to_u8(uint8_t dst[], __IO const uint32_t src[], uint32_t n);
void PKA_load_ciphering_parameter(void);
void PKA_load_unciphering_parameter(void);
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
uint32_t result = 0;
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
/* System interrupt init*/
NVIC_SetPriorityGrouping(NVIC_PRIORITYGROUP_4);
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_PKA_Init();
/* USER CODE BEGIN 2 */
/* Set mode to ECDSA signature generation in interrupt mode */
LL_PKA_SetMode(PKA, LL_PKA_MODE_MONTGOMERY_PARAM_MOD_EXP);
LL_PKA_EnableIT_ADDRERR(PKA);
LL_PKA_EnableIT_RAMERR(PKA);
LL_PKA_EnableIT_PROCEND(PKA);
/* FROM PLAINTEXT TO CIPHERTEXT */
/* Loads the input buffers to PKA RAM */
PKA_load_ciphering_parameter();
/* Launch the computation in interrupt mode */
LL_PKA_Start(PKA);
/* Wait for the interrupt callback */
while(endOfProcess != 1);
endOfProcess = 0;
/* Retrieve the result and output buffer */
PKA_Memcpy_u32_to_u8(buffer, &PKA->RAM[PKA_MODULAR_EXP_OUT_SM_ALGO_ACC1], rsa_pub_2048_modulus_len / 4);
/* Compare to expected results */
result = Buffercmp(buffer, ciphertext_bin, ciphertext_bin_len);
if (result != 0)
{
LED_Blinking(LED_BLINK_ERROR);
}
/* FROM CIPHERTEXT TO PLAINTEXT */
/* Loads the input buffers to PKA RAM */
PKA_load_unciphering_parameter();
/* Launch the computation in interrupt mode */
LL_PKA_Start(PKA);
/* Wait for the interrupt callback */
while(endOfProcess != 1);
endOfProcess = 0;
/* Retrieve the result and output buffer */
PKA_Memcpy_u32_to_u8(buffer, &PKA->RAM[PKA_MODULAR_EXP_OUT_SM_ALGO_ACC1], rsa_pub_2048_modulus_len / 4);
/* Compare to expected results */
result = Buffercmp(buffer, plaintext_bin, plaintext_bin_len);
if (result != 0)
{
LED_Blinking(LED_BLINK_ERROR);
}
LED_On();
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
LL_FLASH_SetLatency(LL_FLASH_LATENCY_0);
while(LL_FLASH_GetLatency() != LL_FLASH_LATENCY_0)
{
}
LL_PWR_SetRegulVoltageScaling(LL_PWR_REGU_VOLTAGE_SCALE2);
LL_RCC_HSI_Enable();
/* Wait till HSI is ready */
while(LL_RCC_HSI_IsReady() != 1)
{
}
LL_RCC_HSI_SetCalibTrimming(64);
LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_HSI);
/* Wait till System clock is ready */
while(LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_HSI)
{
}
LL_RCC_SetAHBPrescaler(LL_RCC_SYSCLK_DIV_1);
LL_RCC_SetAHB3Prescaler(LL_RCC_SYSCLK_DIV_1);
LL_RCC_SetAPB1Prescaler(LL_RCC_APB1_DIV_1);
LL_RCC_SetAPB2Prescaler(LL_RCC_APB2_DIV_1);
LL_Init1msTick(16000000);
/* Update CMSIS variable (which can be updated also through SystemCoreClockUpdate function) */
LL_SetSystemCoreClock(16000000);
}
/**
* @brief PKA Initialization Function
* @param None
* @retval None
*/
static void MX_PKA_Init(void)
{
/* USER CODE BEGIN PKA_Init 0 */
/* USER CODE END PKA_Init 0 */
/* Peripheral clock enable */
LL_AHB3_GRP1_EnableClock(LL_AHB3_GRP1_PERIPH_PKA);
/* USER CODE BEGIN PKA_Init 1 */
/* USER CODE END PKA_Init 1 */
LL_PKA_Enable(PKA);
/* USER CODE BEGIN PKA_Init 2 */
/* Configure NVIC for PKA interrupts */
/* Set priority for PKA_IRQn */
/* Enable PKA_IRQn */
NVIC_SetPriority(PKA_IRQn, 0);
NVIC_EnableIRQ(PKA_IRQn);
/* USER CODE END PKA_Init 2 */
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void)
{
LL_GPIO_InitTypeDef GPIO_InitStruct = {0};
/* GPIO Ports Clock Enable */
LL_AHB2_GRP1_EnableClock(LL_AHB2_GRP1_PERIPH_GPIOB);
/**/
LL_GPIO_ResetOutputPin(LED2_GPIO_Port, LED2_Pin);
/**/
GPIO_InitStruct.Pin = LED2_Pin;
GPIO_InitStruct.Mode = LL_GPIO_MODE_OUTPUT;
GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_PUSHPULL;
GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;
LL_GPIO_Init(LED2_GPIO_Port, &GPIO_InitStruct);
}
/* USER CODE BEGIN 4 */
/**
* @brief Load into PKA RAM the ciphering parameters.
* @param None
* @retval None
*/
void PKA_load_ciphering_parameter(void)
{
/* Get the number of bit per operand */
PKA->RAM[PKA_MODULAR_EXP_IN_OP_NB_BITS] = rsa_pub_2048_modulus_len*8;
/* Get the number of bit of the exponent */
PKA->RAM[PKA_MODULAR_EXP_IN_EXP_NB_BITS] = rsa_pub_2048_publicExponent_len*8;
/* Move the input parameters pOp1 to PKA RAM */
PKA_Memcpy_u8_to_u32(&PKA->RAM[PKA_MODULAR_EXP_IN_EXPONENT_BASE], plaintext_bin, rsa_pub_2048_modulus_len);
PKA->RAM[PKA_MODULAR_EXP_IN_EXPONENT_BASE + rsa_pub_2048_modulus_len / 4] = 0;
/* Move the exponent to PKA RAM */
PKA_Memcpy_u8_to_u32(&PKA->RAM[PKA_MODULAR_EXP_IN_EXPONENT], rsa_pub_2048_publicExponent, rsa_pub_2048_publicExponent_len);
PKA->RAM[PKA_MODULAR_EXP_IN_EXPONENT + rsa_pub_2048_publicExponent_len / 4] = 0;
/* Move the modulus to PKA RAM */
PKA_Memcpy_u8_to_u32(&PKA->RAM[PKA_MODULAR_EXP_IN_MODULUS], rsa_pub_2048_modulus, rsa_pub_2048_modulus_len);
PKA->RAM[PKA_MODULAR_EXP_IN_MODULUS + rsa_pub_2048_modulus_len / 4] = 0;
}
/**
* @brief Load into PKA RAM the unciphering parameters.
* @param None
* @retval None
*/
void PKA_load_unciphering_parameter(void)
{
/* Get the number of bit per operand */
PKA->RAM[PKA_MODULAR_EXP_IN_OP_NB_BITS] = rsa_pub_2048_modulus_len*8;
/* Get the number of bit of the exponent */
PKA->RAM[PKA_MODULAR_EXP_IN_EXP_NB_BITS] = rsa_priv_2048_privateExponent_len*8;
/* Move the input parameters pOp1 to PKA RAM */
PKA_Memcpy_u8_to_u32(&PKA->RAM[PKA_MODULAR_EXP_IN_EXPONENT_BASE], ciphertext_bin, rsa_pub_2048_modulus_len);
PKA->RAM[PKA_MODULAR_EXP_IN_EXPONENT_BASE + rsa_pub_2048_modulus_len / 4] = 0;
/* Move the exponent to PKA RAM */
PKA_Memcpy_u8_to_u32(&PKA->RAM[PKA_MODULAR_EXP_IN_EXPONENT], rsa_priv_2048_privateExponent, rsa_priv_2048_privateExponent_len);
PKA->RAM[PKA_MODULAR_EXP_IN_EXPONENT + rsa_priv_2048_privateExponent_len / 4] = 0;
/* Move the modulus to PKA RAM */
PKA_Memcpy_u8_to_u32(&PKA->RAM[PKA_MODULAR_EXP_IN_MODULUS], rsa_priv_2048_modulus, rsa_pub_2048_modulus_len);
PKA->RAM[PKA_MODULAR_EXP_IN_MODULUS + rsa_pub_2048_modulus_len / 4] = 0;
}
void PKA_ERROR_callback(void)
{
LED_Blinking(LED_BLINK_ERROR);
}
void PKA_PROCEND_callback(void)
{
endOfProcess = 1;
}
/**
* @brief Compares two buffers.
* @param pBuffer1, pBuffer2: buffers to be compared.
* @param BufferLength: buffer's length
* @retval 0 : pBuffer1 identical to pBuffer2
* >0 : pBuffer1 differs from pBuffer2
*/
static uint32_t Buffercmp(const uint8_t* pBuffer1,const uint8_t* pBuffer2, uint32_t BufferLength)
{
while (BufferLength--)
{
if ((*pBuffer1) != *pBuffer2)
{
return BufferLength;
}
pBuffer1++;
pBuffer2++;
}
return 0;
}
/**
* @brief Copy uint8_t array to uint32_t array to fit PKA number representation.
* @param dst Pointer to destination
* @param src Pointer to source
* @param n Number of u32 to be handled
* @retval dst
*/
__IO uint32_t *PKA_Memcpy_u8_to_u32(__IO uint32_t dst[], const uint8_t src[], uint32_t n)
{
const uint32_t *ptrSrc = (const uint32_t *) src;
if (dst != 0)
{
for (uint32_t index = 0; index < n / 4; index++)
{
dst[index] = __REV(ptrSrc[n / 4 - index - 1]);
}
}
return dst;
}
/**
* @brief Copy uint32_t array to uint8_t array to fit PKA number representation.
* @param dst Pointer to destination
* @param src Pointer to source
* @param n Number of u8 to be handled (must be multiple of 4)
* @retval dst
*/
uint8_t *PKA_Memcpy_u32_to_u8(uint8_t dst[], __IO const uint32_t src[], uint32_t n)
{
uint32_t *ptrDst = (uint32_t *) dst;
if (dst != 0)
{
for (uint32_t index = 0; index < n; index++)
{
ptrDst[n - index - 1] = __REV(src[index]);
}
}
return dst;
}
/**
* @brief Turn-on LED2.
* @param None
* @retval None
*/
void LED_On(void)
{
/* Turn LED2 on */
LL_GPIO_SetOutputPin(LED2_GPIO_Port, LED2_Pin);
}
/**
* @brief Set LED2 to Blinking mode for an infinite loop (toggle period based on value provided as input parameter).
* @param Period : Period of time (in ms) between each toggling of LED
* This parameter can be user defined values. Pre-defined values used in that example are :
* @arg LED_BLINK_FAST : Fast Blinking
* @arg LED_BLINK_SLOW : Slow Blinking
* @arg LED_BLINK_ERROR : Error specific Blinking
* @retval None
*/
void LED_Blinking(uint32_t Period)
{
/* Toggle LED2 in an infinite loop */
while (1)
{
LL_GPIO_TogglePin(LED2_GPIO_Port, LED2_Pin);
LL_mDelay(Period);
}
}
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d", file, line) */
/* Infinite loop */
while (1)
{
}
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */