672 lines
18 KiB
C
672 lines
18 KiB
C
/* USER CODE BEGIN Header */
|
|
/**
|
|
******************************************************************************
|
|
* @file tim.c
|
|
* @brief This file provides code for the configuration
|
|
* of the TIM instances.
|
|
******************************************************************************
|
|
* @attention
|
|
*
|
|
* Copyright (c) 2022 STMicroelectronics.
|
|
* All rights reserved.
|
|
*
|
|
* This software is licensed under terms that can be found in the LICENSE file
|
|
* in the root directory of this software component.
|
|
* If no LICENSE file comes with this software, it is provided AS-IS.
|
|
*
|
|
******************************************************************************
|
|
*/
|
|
/* USER CODE END Header */
|
|
/* Includes ------------------------------------------------------------------*/
|
|
#include "tim.h"
|
|
#include "main.h"
|
|
#include "stdio.h"
|
|
#include "ev1527.h"
|
|
/* USER CODE BEGIN 0 */
|
|
extern TIM_HandleTypeDef htim1;
|
|
|
|
// DMA_HandleTypeDef hdma_tim1_ch1; //PA8 WS2812B
|
|
|
|
//DMA_HandleTypeDef hdma_tim1_ch2; //PA9 WS2812B
|
|
|
|
// TIM_HandleTypeDef htim1;
|
|
|
|
/* USER CODE BEGIN PV */
|
|
#if 1
|
|
|
|
extern volatile uint32_t capture_Buf[3]; // counter
|
|
extern volatile uint8_t capture_Cnt; // state
|
|
extern volatile uint32_t high_time, low_time; // high level duration, low level duration
|
|
|
|
|
|
|
|
|
|
/* Captured Value */
|
|
extern uint32_t uwIC2Value;
|
|
/* Duty Cycle Value */
|
|
extern uint32_t uwDutyCycle;
|
|
/* Frequency Value */
|
|
extern uint32_t uwFrequency;
|
|
#endif
|
|
|
|
uint8_t bit=0;
|
|
#if 1
|
|
/* Captured Values */
|
|
extern uint32_t uwIC2Value1;
|
|
extern uint32_t uwIC2Value2;
|
|
extern uint32_t uwDiffCapture;
|
|
|
|
/* Capture index */
|
|
extern uint16_t uhCaptureIndex;
|
|
|
|
/* Frequency Value */
|
|
extern uint32_t uwFrequency;
|
|
#endif
|
|
/* USER CODE END PV */
|
|
|
|
|
|
/* USER CODE END 0 */
|
|
|
|
/**
|
|
* @brief TIM1 Initialization Function
|
|
* @param None
|
|
* @retval None
|
|
*/
|
|
void MX_TIM1_Init(void)
|
|
{
|
|
|
|
/* USER CODE BEGIN TIM1_Init 0 */
|
|
|
|
/* USER CODE END TIM1_Init 0 */
|
|
|
|
//TIM_SlaveConfigTypeDef sSlaveConfig = {0};
|
|
TIM_MasterConfigTypeDef sMasterConfig = {0};
|
|
TIM_IC_InitTypeDef sConfigIC = {0};
|
|
|
|
/* USER CODE BEGIN TIM1_Init 1 */
|
|
|
|
/* USER CODE END TIM1_Init 1 */
|
|
htim1.Instance = TIM1;
|
|
htim1.Init.Prescaler = TIM1_PRESCALER_VALUE;
|
|
htim1.Init.CounterMode = TIM_COUNTERMODE_UP;
|
|
htim1.Init.Period = 0xffff; // TIM1_PERIOD_VALUE; // 0xffff; // TIM1_PERIOD_VALUE;
|
|
htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
|
|
htim1.Init.RepetitionCounter = 0;
|
|
htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
|
|
#if 0
|
|
if (HAL_TIM_Base_Init(&htim1) != HAL_OK)
|
|
{
|
|
Error_Handler();
|
|
}
|
|
#endif
|
|
if (HAL_TIM_IC_Init(&htim1) != HAL_OK)
|
|
{
|
|
Error_Handler();
|
|
}
|
|
#if 0
|
|
sSlaveConfig.SlaveMode = TIM_SLAVEMODE_RESET;
|
|
sSlaveConfig.InputTrigger = TIM_TS_TI2FP2;
|
|
sSlaveConfig.TriggerPolarity = TIM_INPUTCHANNELPOLARITY_RISING;
|
|
sSlaveConfig.TriggerFilter = 0;
|
|
if (HAL_TIM_SlaveConfigSynchro(&htim1, &sSlaveConfig) != HAL_OK)
|
|
{
|
|
Error_Handler();
|
|
}
|
|
#endif
|
|
#if 1
|
|
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
|
|
sMasterConfig.MasterOutputTrigger2 = TIM_TRGO2_RESET;
|
|
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
|
|
if (HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig) != HAL_OK)
|
|
{
|
|
Error_Handler();
|
|
}
|
|
#endif
|
|
//sConfigIC.ICPolarity = TIM_INPUTCHANNELPOLARITY_FALLING;
|
|
sConfigIC.ICPolarity = TIM_INPUTCHANNELPOLARITY_RISING;
|
|
// sConfigIC.ICSelection = TIM_ICSELECTION_INDIRECTTI;
|
|
sConfigIC.ICSelection = TIM_ICSELECTION_DIRECTTI;
|
|
sConfigIC.ICPrescaler = TIM_ICPSC_DIV1;
|
|
sConfigIC.ICFilter = 0;
|
|
if (HAL_TIM_IC_ConfigChannel(&htim1, &sConfigIC, TIM_CHANNEL_2) != HAL_OK)
|
|
{
|
|
printf("\r\n tim1 ch1 falling config error \r\n");
|
|
Error_Handler();
|
|
}
|
|
#if 1
|
|
sConfigIC.ICPolarity = TIM_INPUTCHANNELPOLARITY_FALLING;
|
|
sConfigIC.ICSelection = TIM_ICSELECTION_DIRECTTI;
|
|
if (HAL_TIM_IC_ConfigChannel(&htim1, &sConfigIC, TIM_CHANNEL_1) != HAL_OK)
|
|
{
|
|
printf("\r\n tim1 ch2 rising config error \r\n");
|
|
Error_Handler();
|
|
}
|
|
#endif
|
|
/* USER CODE BEGIN TIM1_Init 2 */
|
|
|
|
/* USER CODE END TIM1_Init 2 */
|
|
|
|
}
|
|
|
|
#if 1
|
|
|
|
#define EV1527_H4 328 // NARROW PULSE WIDTH us, varies on different remote control
|
|
#define EV1527_H4_MIN (EV1527_H4 * 90 / 100)
|
|
#define EV1527_H4_MAX (EV1527_H4 * 110 / 100)
|
|
|
|
#define EV1527_H12 1100 // 998 // WIDE PULSE WIDTH us, varies on different remote control
|
|
#define EV1527_H12_MIN (EV1527_H12 * 90 / 100)
|
|
#define EV1527_H12_MAX (EV1527_H12 * 110 / 100)
|
|
|
|
#define EV1527_L4 EV1527_H4 // WIDE PULSE WIDTH us
|
|
#define EV1527_L4_MIN (EV1527_L4 * 90 / 100)
|
|
#define EV1527_L4_MAX (EV1527_L4 * 110 / 100)
|
|
|
|
#define EV1527_L12 EV1527_H12 // WIDE PULSE WIDTH us
|
|
#define EV1527_L12_MIN (EV1527_L12 * 90 / 100)
|
|
#define EV1527_L12_MAX (EV1527_L12 * 110 / 100)
|
|
|
|
#define EV1527_SYN_L 11981-328 // SYNC PULSE LOW WIDTH us, HIGH TIME=EV1527_H4
|
|
#define EV1527_SYN_MIN (EV1527_L12 * 90 / 100)
|
|
#define EV1527_SYN_MAX (EV1527_L12 * 110 / 100)
|
|
|
|
|
|
static uint32_t highCnt =0, lowCnt =0; //pulse high and low duration
|
|
static uint32_t syn =0, code =0, pulseCnt =0; // sync, parsed code, bit cnt used in decoding process
|
|
|
|
void EV1527Reset(void)
|
|
{
|
|
highCnt = 0;
|
|
lowCnt = 0;
|
|
syn = 0;
|
|
code = 0;
|
|
pulseCnt= 0;
|
|
}
|
|
|
|
void EV1527Decode(uint32_t v)
|
|
{
|
|
code <<= 1;
|
|
if (v)
|
|
{
|
|
code |= 1;
|
|
}
|
|
pulseCnt ++;
|
|
//printf("c: %ld, p= %ld \r\n", v, pulseCnt);
|
|
if(pulseCnt == 24)
|
|
{
|
|
// 1. same valid code received more than 1 times
|
|
// 2. always same code all the time, send out/up once
|
|
// 3. some long press application, say tune up light, +++ send up/out
|
|
// 4. send up/out via message queue
|
|
printf("Addr: %ld, code= %ld \r\n", code >> 4, code&0x000000FF);
|
|
EV1527Reset();
|
|
}
|
|
}
|
|
|
|
void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim)
|
|
{
|
|
static uint32_t uwICValue;
|
|
static uint32_t last_uwICValue;
|
|
uint32_t uwDiffCapture;
|
|
static uint32_t highCnt=0, lowCnt=0;
|
|
static uint8_t sync=0;
|
|
|
|
//printf(" cc ");
|
|
// RF_Signal_Decode();
|
|
|
|
//if (TIM1 == htim->Instance)
|
|
{
|
|
//if ((htim->Channel == HAL_TIM_ACTIVE_CHANNEL_2))
|
|
{
|
|
if (HAL_GPIO_ReadPin(RF_Receive_GPIO_Port,RF_Receive_GPIO_Pin)== GPIO_PIN_RESET)
|
|
{ // Falling edge
|
|
//printf(">");
|
|
highCnt = HAL_TIM_ReadCapturedValue(&htim1, TIM_CHANNEL_2); // get current value
|
|
}
|
|
else if ((HAL_GPIO_ReadPin(RF_Receive_GPIO_Port,RF_Receive_GPIO_Pin) == GPIO_PIN_SET))
|
|
{ // Rising edge
|
|
lowCnt = HAL_TIM_ReadCapturedValue(&htim1, TIM_CHANNEL_2); // get current value
|
|
if (syn == 1)
|
|
{ // sync then decode
|
|
if ((lowCnt > EV1527_L4_MIN) && (highCnt < EV1527_L4_MAX))
|
|
{
|
|
|
|
if ((lowCnt > EV1527_H12_MIN) && (highCnt < EV1527_H12_MAX))
|
|
{ // short pulse, there must be a valid long pulse, data=1, otherwise error
|
|
EV1527Decode(1);
|
|
}
|
|
else
|
|
{
|
|
EV1527Reset(); // error handling
|
|
}
|
|
}
|
|
}
|
|
else if ((lowCnt > EV1527_L12_MIN) && (lowCnt < EV1527_L12_MAX))
|
|
{
|
|
if ((highCnt > EV1527_H4_MIN) && (highCnt < EV1527_H4_MAX))
|
|
{ // long pulse, there must be a valid short pulse, data =0, otherwise error
|
|
EV1527Decode(0);
|
|
}
|
|
else
|
|
{
|
|
EV1527Reset(); // error handling
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if ((lowCnt > EV1527_SYN_MIN) && (lowCnt < EV1527_SYN_MAX))
|
|
{ // sync feature Low level
|
|
if ((highCnt > EV1527_H4_MIN) && (highCnt < EV1527_H4_MAX))
|
|
{
|
|
// and there must be a valid sync high pulse, sync starting (may also be error code)
|
|
syn = 1;
|
|
pulseCnt = 0;
|
|
code = 0;
|
|
//printf("sync: %d \r\n", lowCnt);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
/**
|
|
* @brief Input Capture callback in non blocking mode
|
|
* @param htim : TIM IC handle
|
|
* @retval None
|
|
*/
|
|
#if 0
|
|
void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim)
|
|
{
|
|
static uint32_t uwICValue;
|
|
static uint32_t last_uwICValue;
|
|
uint32_t uwDiffCapture;
|
|
// printf(" cc ");
|
|
// RF_Signal_Decode();
|
|
|
|
if (TIM1 == htim->Instance)
|
|
{
|
|
// if ((htim->Channel == HAL_TIM_ACTIVE_CHANNEL_2)||(htim->Channel == HAL_TIM_ACTIVE_CHANNEL_1))
|
|
// if ((htim->Channel == HAL_TIM_ACTIVE_CHANNEL_2))
|
|
{
|
|
switch(capture_Cnt)
|
|
{
|
|
case 1:
|
|
capture_Buf[0] = HAL_TIM_ReadCapturedValue(&htim1, TIM_CHANNEL_2); // get current value
|
|
//printf("B0:%ld ", capture_Buf[0]);
|
|
//printf("/");
|
|
TIM_SET_CAPTUREPOLARITY(&htim1, TIM_CHANNEL_2, TIM_ICPOLARITY_FALLING); // set falling edge capture
|
|
capture_Cnt ++;
|
|
break;
|
|
case 2:
|
|
capture_Buf[1] = HAL_TIM_ReadCapturedValue(&htim1, TIM_CHANNEL_2); // get current value
|
|
//printf("B1:%ld ", capture_Buf[1]);
|
|
//printf("_");
|
|
//HAL_TIM_IC_Stop_IT(&htim1, TIM_CHANNEL_2); // stop capture or _HAL_TIM_DISABLE(&htim1);
|
|
TIM_SET_CAPTUREPOLARITY(&htim1, TIM_CHANNEL_2, TIM_ICPOLARITY_RISING); // set falling edge capture
|
|
capture_Cnt ++;
|
|
case 3:
|
|
capture_Buf[2] = HAL_TIM_ReadCapturedValue(&htim1, TIM_CHANNEL_2); // get current value
|
|
//printf("B2:%ld ", capture_Buf[2]);
|
|
printf(")");
|
|
HAL_TIM_IC_Stop_IT(&htim1, TIM_CHANNEL_2); // stop capture or _HAL_TIM_DISABLE(&htim1);
|
|
//TIM_SET_CAPTUREPOLARITY(&htim1, TIM_CHANNEL_2, TIM_ICPOLARITY_RISING); // set falling edge capture
|
|
// capture_Cnt ++;
|
|
break;
|
|
|
|
|
|
}
|
|
// RF_Signal_Decode();
|
|
}
|
|
}
|
|
|
|
}
|
|
#endif
|
|
|
|
#if 0
|
|
/* USER CODE BEGIN 4 */
|
|
/**
|
|
* @brief Input capture callback in non blocking mode
|
|
* @param htim : htim handle
|
|
* @retval None
|
|
*/
|
|
void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim)
|
|
{
|
|
if (htim->Channel == HAL_TIM_ACTIVE_CHANNEL_2)
|
|
{
|
|
if(uhCaptureIndex == 0)
|
|
{
|
|
/* Get the 1st Input Capture value */
|
|
uwIC2Value1 = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_2);
|
|
uhCaptureIndex = 1;
|
|
printf("Capture_state=%d \r\n",uhCaptureIndex);
|
|
}
|
|
else if(uhCaptureIndex == 1)
|
|
{
|
|
/* Get the 2nd Input Capture value */
|
|
uwIC2Value2 = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_2);
|
|
|
|
/* Capture computation */
|
|
if (uwIC2Value2 > uwIC2Value1)
|
|
{
|
|
uwDiffCapture = (uwIC2Value2 - uwIC2Value1);
|
|
}
|
|
else if (uwIC2Value2 < uwIC2Value1)
|
|
{
|
|
/* 0xFFFF is max TIM1_CCRx value */
|
|
uwDiffCapture = ((0xFFFF - uwIC2Value1) + uwIC2Value2) + 1;
|
|
}
|
|
else
|
|
{
|
|
/* If capture values are equal, we have reached the limit of frequency
|
|
measures */
|
|
Error_Handler();
|
|
}
|
|
#if 1
|
|
/* Frequency computation: for this example TIMx (TIM1) is clocked by
|
|
APB2Clk */
|
|
uwFrequency = HAL_RCC_GetPCLK2Freq() / uwDiffCapture;
|
|
|
|
printf("diff=%ld uwF=%ld Hz\r\n", uwDiffCapture, uwFrequency);
|
|
// uhCaptureIndex = 0;
|
|
#endif
|
|
if ((uwDiffCapture > 100) && (uwDiffCapture < 300))
|
|
{
|
|
uhCaptureIndex = 2;
|
|
printf("Capture_state=%d \r\n",uhCaptureIndex);
|
|
}
|
|
} else if (uhCaptureIndex ==2)
|
|
{
|
|
/* Get the 2nd Input Capture value */
|
|
uwIC2Value1 = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_2);
|
|
uhCaptureIndex = 3;
|
|
} else if (uhCaptureIndex ==3)
|
|
{
|
|
uwIC2Value2 = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_2);
|
|
|
|
/* Capture computation */
|
|
if (uwIC2Value2 > uwIC2Value1)
|
|
{
|
|
uwDiffCapture = (uwIC2Value2 - uwIC2Value1);
|
|
}
|
|
else if (uwIC2Value2 < uwIC2Value1)
|
|
{
|
|
/* 0xFFFF is max TIM1_CCRx value */
|
|
uwDiffCapture = ((0xFFFF - uwIC2Value1) + uwIC2Value2) + 1;
|
|
}
|
|
else
|
|
{
|
|
/* If capture values are equal, we have reached the limit of frequency
|
|
measures */
|
|
Error_Handler();
|
|
}
|
|
|
|
if ((uwDiffCapture > 300) && (uwDiffCapture < 500))
|
|
{
|
|
bit0_high =1;
|
|
} else if ((uwDiffCapture > 500) && (uwDiffCapture < 1100))
|
|
{
|
|
bit0_low =1;
|
|
}
|
|
|
|
uwIC2Value1 = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_2);
|
|
uhCaptureIndex = 2;
|
|
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if 0
|
|
/**
|
|
* @brief Input Capture callback in non blocking mode
|
|
* @param htim : TIM IC handle
|
|
* @retval None
|
|
*/
|
|
void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim)
|
|
{
|
|
if (htim->Channel == HAL_TIM_ACTIVE_CHANNEL_2)
|
|
{
|
|
/* Get the Input Capture value */
|
|
uwIC2Value = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_2);
|
|
|
|
if (uwIC2Value != 0)
|
|
{
|
|
/* Duty cycle computation */
|
|
// uwDutyCycle = ((HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_2)) * 100) / uwIC2Value;
|
|
uwDutyCycle = ((HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_2) - uwIC2Value) * 100) / uwIC2Value;
|
|
if ( uwDutyCycle > 70)
|
|
{
|
|
bit = 1;
|
|
} else if (uwDutyCycle < 30)
|
|
{
|
|
bit = 0;
|
|
}
|
|
printf("%2d ", bit);
|
|
/* uwFrequency computation
|
|
TIM1 counter clock = (System Clock) */
|
|
// uwFrequency = ( HAL_RCC_GetSysClockFreq() ) / uwIC2Value;
|
|
// printf("f=%ld duty=%ld \r\n", uwFrequency, uwDutyCycle);
|
|
}
|
|
else
|
|
{
|
|
uwDutyCycle = 0;
|
|
uwFrequency = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
#if 0
|
|
/**
|
|
* @brief Input Capture callback in non blocking mode
|
|
* @param htim : TIM IC handle
|
|
* @retval None
|
|
*/
|
|
void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim)
|
|
{
|
|
if (htim->Channel == HAL_TIM_ACTIVE_CHANNEL_2)
|
|
{
|
|
/* Get the Input Capture value */
|
|
uwIC2Value = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_2);
|
|
|
|
if (uwIC2Value != 0)
|
|
{
|
|
/* Duty cycle computation */
|
|
uwDutyCycle = ((HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_2)) * 100) / uwIC2Value;
|
|
|
|
/* uwFrequency computation
|
|
TIM1 counter clock = (System Clock) */
|
|
uwFrequency = ( HAL_RCC_GetSysClockFreq() ) / uwIC2Value;
|
|
printf("f=%ld duty=%ld \r\n", uwFrequency, uwDutyCycle);
|
|
}
|
|
else
|
|
{
|
|
uwDutyCycle = 0;
|
|
uwFrequency = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
#if 0
|
|
/* TIM1 init function */
|
|
void MX_TIM1_Init(void)
|
|
{
|
|
|
|
/* USER CODE BEGIN TIM1_Init 0 */
|
|
|
|
/* USER CODE END TIM1_Init 0 */
|
|
|
|
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
|
|
TIM_MasterConfigTypeDef sMasterConfig = {0};
|
|
TIM_OC_InitTypeDef sConfigOC = {0};
|
|
TIM_BreakDeadTimeConfigTypeDef sBreakDeadTimeConfig = {0};
|
|
|
|
/* USER CODE BEGIN TIM1_Init 1 */
|
|
|
|
/* USER CODE END TIM1_Init 1 */
|
|
htim1.Instance = TIM1;
|
|
htim1.Init.Prescaler = 48 -1;
|
|
htim1.Init.CounterMode = TIM_COUNTERMODE_UP;
|
|
htim1.Init.Period = 0xffff -1;
|
|
htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
|
|
htim1.Init.RepetitionCounter = 0;
|
|
htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE;//TIM_AUTORELOAD_PRELOAD_DISABLE;
|
|
if (HAL_TIM_Base_Init(&htim1) != HAL_OK)
|
|
{
|
|
Error_Handler();
|
|
}
|
|
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
|
|
if (HAL_TIM_ConfigClockSource(&htim1, &sClockSourceConfig) != HAL_OK)
|
|
{
|
|
Error_Handler();
|
|
}
|
|
if (HAL_TIM_PWM_Init(&htim1) != HAL_OK)
|
|
{
|
|
Error_Handler();
|
|
}
|
|
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
|
|
sMasterConfig.MasterOutputTrigger2 = TIM_TRGO2_RESET;
|
|
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
|
|
if (HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig) != HAL_OK)
|
|
{
|
|
Error_Handler();
|
|
}
|
|
sConfigOC.OCMode = TIM_OCMODE_PWM1;
|
|
sConfigOC.Pulse = 0;
|
|
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
|
|
sConfigOC.OCNPolarity = TIM_OCNPOLARITY_HIGH;
|
|
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
|
|
sConfigOC.OCIdleState = TIM_OCIDLESTATE_RESET; //TIM_OCIDLESTATE_RESET;
|
|
sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_RESET;
|
|
if (HAL_TIM_PWM_ConfigChannel(&htim1, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
|
|
{
|
|
Error_Handler();
|
|
}
|
|
#if 1
|
|
sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_DISABLE;
|
|
sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE;
|
|
sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF;
|
|
sBreakDeadTimeConfig.DeadTime = 0;
|
|
sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE;
|
|
sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_HIGH;
|
|
sBreakDeadTimeConfig.BreakFilter = 0;
|
|
sBreakDeadTimeConfig.BreakAFMode = TIM_BREAK_AFMODE_INPUT;
|
|
sBreakDeadTimeConfig.Break2State = TIM_BREAK2_DISABLE;
|
|
sBreakDeadTimeConfig.Break2Polarity = TIM_BREAK2POLARITY_HIGH;
|
|
sBreakDeadTimeConfig.Break2Filter = 0;
|
|
sBreakDeadTimeConfig.Break2AFMode = TIM_BREAK_AFMODE_INPUT;
|
|
sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE;
|
|
if (HAL_TIMEx_ConfigBreakDeadTime(&htim1, &sBreakDeadTimeConfig) != HAL_OK)
|
|
{
|
|
Error_Handler();
|
|
}
|
|
#endif
|
|
/* USER CODE BEGIN TIM1_Init 2 */
|
|
|
|
/* USER CODE END TIM1_Init 2 */
|
|
HAL_TIM_MspPostInit(&htim1);
|
|
|
|
}
|
|
|
|
void HAL_TIM_Base_MspInit(TIM_HandleTypeDef* tim_baseHandle)
|
|
{
|
|
|
|
if(tim_baseHandle->Instance==TIM1)
|
|
{
|
|
/* USER CODE BEGIN TIM1_MspInit 0 */
|
|
|
|
/* USER CODE END TIM1_MspInit 0 */
|
|
/* TIM1 clock enable */
|
|
__HAL_RCC_TIM1_CLK_ENABLE();
|
|
|
|
/* TIM1 DMA Init */
|
|
/* TIM1_CH1 Init */
|
|
hdma_tim1_ch1.Instance = DMA1_Channel1;
|
|
|
|
hdma_tim1_ch1.Init.Request = DMA_REQUEST_TIM1_CH1;
|
|
hdma_tim1_ch1.Init.Direction = DMA_MEMORY_TO_PERIPH;
|
|
hdma_tim1_ch1.Init.PeriphInc = DMA_PINC_DISABLE;
|
|
hdma_tim1_ch1.Init.MemInc = DMA_MINC_ENABLE;
|
|
hdma_tim1_ch1.Init.PeriphDataAlignment = DMA_PDATAALIGN_HALFWORD;
|
|
hdma_tim1_ch1.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE; //DMA_MDATAALIGN_HALFWORD; //DMA_MDATAALIGN_HALFWORD;
|
|
hdma_tim1_ch1.Init.Mode = DMA_CIRCULAR;
|
|
hdma_tim1_ch1.Init.Priority = DMA_PRIORITY_HIGH; //was HIGH
|
|
|
|
if (HAL_DMA_Init(&hdma_tim1_ch1) != HAL_OK)
|
|
{
|
|
Error_Handler();
|
|
}
|
|
#ifdef STM32WL55xx
|
|
if (HAL_DMA_ConfigChannelAttributes(&hdma_tim1_ch1, DMA_CHANNEL_NPRIV) != HAL_OK)
|
|
{
|
|
Error_Handler();
|
|
}
|
|
#endif
|
|
__HAL_LINKDMA(tim_baseHandle,hdma[TIM_DMA_ID_CC1],hdma_tim1_ch1);
|
|
|
|
/* USER CODE BEGIN TIM1_MspInit 1 */
|
|
|
|
/* USER CODE END TIM1_MspInit 1 */
|
|
}
|
|
|
|
}
|
|
void HAL_TIM_MspPostInit(TIM_HandleTypeDef* timHandle)
|
|
{
|
|
|
|
GPIO_InitTypeDef GPIO_InitStruct = {0};
|
|
if(timHandle->Instance==TIM1)
|
|
{
|
|
/* USER CODE BEGIN TIM1_MspPostInit 0 */
|
|
|
|
/* USER CODE END TIM1_MspPostInit 0 */
|
|
__HAL_RCC_GPIOA_CLK_ENABLE();
|
|
/**TIM1 GPIO Configuration
|
|
PA8 ------> TIM1_CH1
|
|
*/
|
|
GPIO_InitStruct.Pin = GPIO_PIN_8;
|
|
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
|
|
GPIO_InitStruct.Pull = GPIO_PULLUP; //GPIO_NOPULL;
|
|
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
|
|
GPIO_InitStruct.Alternate = GPIO_AF1_TIM1;
|
|
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
|
|
|
|
/* USER CODE BEGIN TIM1_MspPostInit 1 */
|
|
|
|
/* USER CODE END TIM1_MspPostInit 1 */
|
|
}
|
|
|
|
}
|
|
|
|
void HAL_TIM_Base_MspDeInit(TIM_HandleTypeDef* tim_baseHandle)
|
|
{
|
|
|
|
if(tim_baseHandle->Instance==TIM1)
|
|
{
|
|
/* USER CODE BEGIN TIM1_MspDeInit 0 */
|
|
|
|
/* USER CODE END TIM1_MspDeInit 0 */
|
|
/* Peripheral clock disable */
|
|
__HAL_RCC_TIM1_CLK_DISABLE();
|
|
|
|
/* TIM1 DMA DeInit */
|
|
HAL_DMA_DeInit(tim_baseHandle->hdma[TIM_DMA_ID_CC1]);
|
|
/* USER CODE BEGIN TIM1_MspDeInit 1 */
|
|
|
|
/* USER CODE END TIM1_MspDeInit 1 */
|
|
}
|
|
|
|
}
|
|
#endif
|
|
|
|
|
|
/* USER CODE BEGIN 1 */
|
|
|
|
/* USER CODE END 1 */
|